[1]MA S J, CHENG B, SHANG Z W, et al.Scattering transform and LSPTSVM and based fault diagnosis of rotating machinery[J].Mechanical Systems and Signal Processing, 2018,104: 155-170.
[2]姚德臣,杨建伟,程晓卿,等.基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J].机械工程学报, 2018,54(9): 168-176.
YAO Dechen, YANG Jianwei, CHENG Xiaoqing, et al.Railway rolling bearing fault diagnosis based on muti-scale IMF permutation entropy and SA-SVM classifier[J].Journal of Mechanical Engineering, 2018,54(9): 169-176.
[3]雷亚国,杨彬,杜兆钧,等.大数据下机械装备故障的深度迁移诊断方法[J].机械工程学报, 2019,55(7): 1-8.
LEI Yaguo, YANG Bin, DU Zhaojun, et al.Deep transfer diagnosis method for machinery in big data era[J].Journal of Mechanical Engineering, 2019,55(7): 1-8.
[4]LIU H C, YAO D C, YANG J W, et al.Lightweight convolutional neural network and its application in rolling bearing fault diagnosis under variable working conditions[J].Sensors, 2019,19(22): 4827.
[5]LIU R N, YANG B Y, ZIO E, et al.Artificial intelligence for fault diagnosis of rotating machinery: a review[J].Mechanical Systems and Signal Processing, 2018,108: 33-47.
[6]LU C, WANG Z, ZHOU B.Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J].Advanced Engineering Informatics, 2017,32: 139-151.
[7]李恒, 张氢, 秦仙蓉, 等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击, 2018,37(19): 124-131.
LI Heng, ZHANG Qing, QIN Xianrong, et al.Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J].Journal of Vibration and Shock, 2018,37(19): 124-131.
[8]MA S J, CAI W, LIU W K, et al.A lighted deep convolutional neural network based fault diagnosis of rotating machinery[J].Sensors, 2019,19(10): 2381.
[9]NGUYEN D, KANG M, KIM C H, et al.Highly reliable state monitoring system for induction motors using dominant features in a two-dimension vibration signal[J].New Review of Hypermedia and Multimedia, 2013,19(3/4): 248-258.
[10]ZEILER M D, FERGUS R.Visualizing and understanding convolutional networks[C]//Proceedings of the European Conference on Computer Vision.Berlin: Springer, 2014.
[11]CHOLLET F.Xception: deep learning with depthwise s-eparable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu: IEEE, 2017.
[12]HOWARD A G, ZHU M L, CHEN B, et al.Mobilenets: efficient convolutional neural networks for mobile vision applications[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu: IEEE, 2017.
[13]HAN S, MAO H, DALLY W J.Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding[C]//International Conference on Learning Representations.San Juan: PUR, 2016.
[14]SMITH W A, RANDALL R B.Rolling element bearing diagnostics using the Case Western Reserve University data: a bench mark study[J].Mechanical Systems and Signal Processing, 2015,64/65: 100-131.
[15]PHAM D H, LE A C.Exploiting multiple word embeddings and one-hot character vectors for aspect-based sentiment analysis[J].International Journal of Approximate Reasoning, 2018,103: 1-10.
[16]MAATEN L, HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research, 2008(9): 2579-2605.