[1]阳建宏, 黎敏, 丁福焰, 等.滚动轴承诊断现场实用技术[M].北京: 机械工业出版社, 2015.
[2]苏文胜, 王奉涛, 张志新, 等.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击, 2010,29(3):18-21.
SU Wensheng, WANG Fengtao, ZHANG Zhixin, et al.Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings[J].Journal of Vibration and Shock, 2010, 29(3): 18-21.
[3]王宏超, 陈进, 董广明.基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J].机械工程学报, 2013,49(1):88-94.
WANG Hongchao, CHEN Jin, DONG Guangming.Fault diagnosis method for rolling bearing’s weak fault based on minimum entropy deconvolution and sparse decomposition[J].Journal of Mechanical Engineering, 2013, 49(1):88-94.
[4]唐贵基, 王晓龙.IVMD融合奇异值差分谱的滚动轴承早期故障诊断[J].振动、测试与诊断, 2016,36(4):700-707.
TANG Guiji, WANG Xiaolong.An incipient fault diagnosis method for rolling bearing based on improved variational mode decomposition and singular value difference spectrum[J].Journal of Vibration, Measurement & Diagnosis, 2016, 36(4): 700-707.
[5]JUNSHENG C, DEJIE Y, YU Y.The application of energy operator demodulation approach based on EMD in machinery fault diagnosis[J].Mechanical Systems and Signal Processing, 2007,21(2):668-677.
[6]李辉, 郑海起, 杨绍普.基于EMD和Teager能量算子的轴承故障诊断研究[J].振动与冲击, 2008,27(10):15-17.
LI Hui, ZHENG Haiqi, YANG Shaopu.Bearing fault diagnosis based on EMD and Teager Kaiser energy operator[J].Journal of Vibration and Shock, 2008, 27(10): 15-17.
[7]夏均忠, 赵磊, 白云川, 等.基于Teager能量算子和ZFFT的滚动轴承故障特征提取[J].振动与冲击, 2017,36(11):106-110.
XIA Junzhong, ZHAO Lei, BAI Yunchuan, et al.Fault feature extraction of rolling element bearings based on Teager energy operator and ZFFT[J].Journal of Vibration and Shock, 2017, 36(11): 106-110.
[8]鞠萍华, 秦树人, 赵玲.基于LMD的能量算子解调方法及其在故障特征信号提取中的应用[J].振动与冲击, 2011,30(2):1-4.
JU Pinghua, QIN Shuren, ZHAO Ling.Energy operator demodulating approach based on LMD and its application in extracting characteristics of a fault signal[J].Journal of Vibration and Shock, 2011, 30(2): 1-4.
[9]杨斌, 祁映强, 王建国, 等.基于自相关能量算子解调的旋转机械故障诊断方法[J].机械设计与制造, 2015(9):69-72.
YANG Bin, QI Yingqiang, WANG Jianguo, et al.Fault diagnosis of rotating machinery based on the autocorrelation energy operator demodulation approach[J].Machinery Design & Manufacture, 2015(9): 69-72.
[10]王少锋, 王戈, 王建国, 等.基于EMD与自相关的能量算子解调机械故障诊断[J].机械设计与制造, 2016(6):174-178.
WANG Shaofeng, WANG Ge, WANG Jianguo, et al.Fault diagnosis of machinery based on the EMD and the autocorrelation energy demodulation.[J].Machinery Design & Manufacture, 2016(6): 174-178.
[11]王天金, 冯志鹏, 郝如江, 等.基于Teager能量算子的滚动轴承故障诊断研究[J].振动与冲击, 2012,31(2):1-5.
WANG Tianjin, FENG Zhipeng, HAO Rujiang, et al.Fault diagnosis of rolling element bearings based on Teager energy operator[J].Journal of Vibration and Shock, 2012, 31(2): 1-5.
[12]马增强, 李亚超, 刘政, 等.基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J].振动与冲击, 2016,35(13):134-139.
MA Zengqiang, LI Yachao, LIU Zheng, et al.Rolling bearings’ fault geature extraction based on variational mode decomposition and Teager energy operator[J].Journal of Vibration and Shock, 2016, 35(13): 134-139.
[13]王奉涛, 苏文胜.滚动轴承故障诊断与寿命预测[M].北京: 科学出版社, 2018.
[14]周小龙, 刘薇娜, 姜振海, 等.改进的HHT方法及其在旋转机械故障诊断中的应用[J].振动与冲击, 2020,39(7):189-195.
ZHOU Xiaolong, LIU Weina, JIANG Zhenhai, et al.Improved HHT method and its applications in rotating machinery fault diagnosis[J].Journal of Vibration and Shock, 2020, 39(7): 189-195.
[15]谷然, 陈捷, 洪荣晶, 等.基于改进自适应变分模态分解的滚动轴承微弱故障诊断[J].振动与冲击, 2020,39(8):1-7.
GU Ran, CHEN Jie, HONG Rongjing, et al.Early fault diagnosis of rolling bearings based on adaptive variational mode decomposition and the Teager energy operator[J].Journal of Vibration and Shock, 2020, 39(8): 1-7.
[16]MARAGOS P, KAISER J F, QUATIERI T F.On amplitude and frequency demodulation using energy operators[J].IEEE Transactions on Signal Processing, 1993, 41(4):1532-1550.
[17]RANDALL R B, SMITH W A.Uses and mis-uses of energy operators for machine diagnostics[J].Mechanical Systems and Signal Processing, 2019,133:106199.
[18]Case Western Reserve University Bearing Data Center Website[EB/OL].[2019-12-28]https://csegroups.case.edu/bearingdatacenter/home.
[19]SMITH W A, RANDALL R B.Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J].Mechanical Systems and Signal Processing, 2015,64/65:100-131.