基于频谱搬移的迭代式谐波实信号频率估计算法

牟泽龙1,涂亚庆1,陈鹏2,刘言1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (11) : 128-133.

PDF(992 KB)
PDF(992 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (11) : 128-133.
论文

基于频谱搬移的迭代式谐波实信号频率估计算法

  • 牟泽龙1,涂亚庆1,陈鹏2,刘言1
作者信息 +

Iterative frequency estimation algorithm for harmonic real signals based on spectrum shifting

  • MOU Zelong1, TU Yaqing1, CHEN Peng2, LIU Yan1
Author information +
文章历史 +

摘要

为抑制谐波实信号中频谱泄漏的影响,提出一种基于频谱搬移的迭代式谐波实信号频率估计算法。在估计某一谐波分量的频率时,所有负频率与其他分量的正频率均为产生频谱泄漏的干扰分量。根据干扰分量的频率逐次进行频谱搬移并抑制干扰分量,得到仅含有单一分量的信号,利用抛物线插值算法估计其频率;得到所有谐波分量的频率后,重新进行干扰分量抑制获得单一分量信号,以得到更加精确的频率估计值。仿真实验表明,所提算法抑制了干扰分量,提高了谐波实信号的频率估计精度,频率估计的均方误差更接近于克拉美罗下限(CRLB)。

Abstract

In order to suppress the influence of spectrum leakage of harmonic real signals, an iterative frequency estimation algorithm for harmonic real signals based on spectrum shifting was proposed.When estimating the frequency of a certain harmonic component, all other components with negative frequencies and positive ones were interference components to produce spectrum leakage.According to each interference component’s frequency, the spectrum shifting was done to suppress the interference component until a signal with a single component was obtained, its frequency was estimated with the parabolic interpolation algorithm.After frequencies of all harmonic components were obtained, suppressing interference components was performed again to update a single component signal for the purpose of estimating a more accurate frequency value.Simulation test results showed that the proposed algorithm can suppress interference components, and improve the frequency estimation accuracy of harmonic real signals; the mean square error of frequency estimation is closer to Cramer-Rao low bound (CRLB).

关键词

频率估计 / 频谱泄漏 / 谐波实信号 / 频谱搬移

Key words

frequency estimation / spectrum leakage / harmonic real signal / spectrum shifting

引用本文

导出引用
牟泽龙1,涂亚庆1,陈鹏2,刘言1. 基于频谱搬移的迭代式谐波实信号频率估计算法[J]. 振动与冲击, 2021, 40(11): 128-133
MOU Zelong1, TU Yaqing1, CHEN Peng2, LIU Yan1. Iterative frequency estimation algorithm for harmonic real signals based on spectrum shifting[J]. Journal of Vibration and Shock, 2021, 40(11): 128-133

参考文献

[1]WEN H, ZHANG J H, MENG Z, et al.Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window[J].IEEE Transactions on Industrial Informatics, 2017, 11(1):16-26.
[2]陈和洋,吴文宣,郑文迪,等.电力系统谐波检测方法综述[J].电气技术,2019,20(9):1-6.
CHEN Heyang, WU Wenxuan, ZHENG Wendi, et al.Reviews of power system harmonic measurement methods[J].Electrical Engineering, 2019, 20(9):1-6.
[3]郑俊飞,王健,夏银水,等.基于谐波雷达的新型裂缝传感器设计[J].传感技术学报,2019,32(9):1297-1302.
ZHENG Junfei, WANG Jian, XIA Yinshui, et al.Design of a novel crack sensor based on harmonic radar[J].Chinese Journal of Sensors and Actuators, 2019, 32(9):1297-1302.
[4]MARZI Z, RAMASAMY D, MADHOW U.Compressive channel estimation and tracking for large arrays in mm wave picocells[J].IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 514-527.
[5]杜亚震,王文华,黄一.基于增量谐波平衡方法的Spar平台垂荡纵摇耦合内共振响应研究[J].振动与冲击,2020,39(1):85-90.
DU Yazhen, WANG Wenhua, HUANG Yi.Swing-pitch coupled internal resonance responses of Spar platform based on IHBM[J].Journal of Vibration and Shock, 2020, 39(1): 85-90.
[6]何其伟,俞翔,毛为民.高维强非线性隔振系统谐波及分岔分析[J].振动与冲击,2016,35(11):61-65.
HE Qiwei, YU Xiang, MAO Weimin.Subharmonic and bifurcation analysis for high-dimensional strongly nonlinear vibration isolation system[J].Journal of Vibration and Shock, 2016, 35(11): 61-65
[7]张刚,李红威.混合多稳态随机共振的故障信号检测[J].振动与冲击,2019,38(18):9-17.
ZHANG Gang, LI Hongwei.Hybrid tri-stable stochastic resonance system used for fault signal detection[J].Journal of Vibration and Shock, 2019, 38(18): 9-17.
[8]LI J F, LI D, JIANG D F, et al.Extended-aperture unitary root MUSIC-based DOA estimation for coprime array[J].IEEE Communications Letters, 2018,22(4):752-755.
[9]ZAI P G, MOHD A M R, YEE V T, et al.Hybrid FFT-ADALINE algorithm with fast estimation of harmonics in power system[J].Signal Processing, 2016,10(8):855-864.
[10]CHANDRASEKHAR K, HAMSAPRIYE, LAKSHMEESHA V K.Analysis of Pisarenko harmonic decomposition-based sub-Nyquist rate spectrum sensing for broadband cognitive radio[J].Defence Science Journal, 2017, 67(1):80-87.
[11]SCHMIDT R, SCHMIDT R O.Multiple emitter location and signal parameter estimation[J].IEEE Transactions on Antennas & Propagation, 1986, 34(3):276-280.
[12]卢洪瑞,郑威,许劲峰.基于最小模MUSIC算法的电力谐波/间谐波检测方法[J].江苏科技大学学报(自然科学版),2018,32(3):370-376.
LU Hongrui, ZHENG Wei, XU Jinfeng.Detection method of harmonic and inter-harmonic in power based on minimum modulus MUSIC algorithm[J].Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2018, 32(3): 370-376.
[13]蔡涛,段善旭,刘方锐.基于实值MUSIC算法的电力谐波分析方法[J].电工技术学报,2009,24(12):149-155.
CAI Tao, DUAN Shanxu, LIU Fangrui.Power harmonic analysis based on real-valued spectral MUSIC algorithm[J].Transactions of China Electrotechnical Society, 2009, 24(12): 149-155.
[14]HUANG S, ZHANG H J, SUN H, et al.Frequency estimation of multiple sinusoids with three sub-Nyquist channels[J].Signal Processing, 2017, 139: 96-101.
[15]卿柏元,滕召胜,高云鹏,等.基于Nuttall窗双谱线插值FFT的电力谐波分析方法[J].中国电机工程学报,2008(25):153-158.
QING Baiyuan, TENG Zhaosheng, GAO Yunpeng, et al.An approach for electrical harmonic analysis based on Nuttall window double-spectrum-line interpolation FFT[J].Proceedings of the CSEE, 2008(25): 153-158.
[16]张鸿博,蔡晓峰,鲁改凤.基于双窗全相位FFT双谱线校正的电力谐波分析[J].仪器仪表学报,2015,36(12):2835-2841.
ZHANG Hongbo, CAI Xiaofeng, LU Gaifeng.Double-spectrum-line correction method based on double-window all-phase FFT for power harmonic analysis[J].Chinese Journal of Scientific Instrument, 2015, 36(12): 2835-2841.
[17]DJUKANOVIC S, POPOVIC′-BUGARIN V.Efficient and accurate detection and frequency estimation of multiple sinusoids[J].IEEE Access, 2019, 7:1118-1125.
[18]陈鹏,涂亚庆,李明,等.基于迭代插值的实复转换频率估计算法[J].振动与冲击,2019,38(18):35-39.
CHEN Peng, TU Yaqing, LI Ming, et al.Real-to-complex-transformation frequency estimation algorithm based on iterative interpolation[J].Journal of Vibration and Shock, 2019, 38(18): 35-39.
[19]DJUKANOVIC′ S, POPOVIC′ T,
MITROVIC′ A.Precise sinusoid frequency estimation based on parabolic interpolation[C]//2016 24th Telecommunications Forum (TELFOR).Belgrade:IEEE, 2017.
[20]KAY S.Fundamentals of statistical signal processing, volume III: practical algorithm development[J].Technometrics, 1993, 37(4):465-466.

PDF(992 KB)

Accesses

Citation

Detail

段落导航
相关文章

/