多Agent深度Q学习和模糊积分的行星齿轮箱故障诊断

陈仁祥1,周君1,胡小林2,曾力1,陈才3,胡超超1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (11) : 147-153.

PDF(1457 KB)
PDF(1457 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (11) : 147-153.
论文

多Agent深度Q学习和模糊积分的行星齿轮箱故障诊断

  • 陈仁祥1,周君1,胡小林2,曾力1,陈才3,胡超超1
作者信息 +

Fault diagnosis of planetary gearbox based on multi-Agent deep Q-learning and fuzzy integral

  • CHEN Renxiang1, ZHOU Jun1, HU Xiaolin2, ZENG Li1,  CHEN Cai3, HU Chaochao1
Author information +
文章历史 +

摘要

针对深度Q学习中单个Agent对行星齿轮箱进行故障诊断时出现的识别率低问题,利用多个Agent进行策略学习,结合模糊积分对多Agent的决策结果进行融合,提出了基于深度Q学习和模糊积分的行星齿轮箱故障诊断方法。对振动信号进行连续小波变换(continuous wavelet transform,CWT)、S变换(S transform, ST)得到相应的时频特征矩阵,随后利用原始时域数据和得到的时频特征矩阵构建多域环境状态空间,以与多个Agent交互;交互过程中将环境返回的原始时域特征、CWT时频特征,ST时频特征分别作为相应Agent的状态,通过深度Q学习算法最大化每个Agent的Q函数值,得到最优策略;采用模糊积分对多Agent的决策结果进行融合得到最终诊断结果。通过行星齿轮箱故障数据进行验证分析,经过模糊积分进行决策融合的诊断结果优于单个Agent,能够有效提高诊断精度。

Abstract

Aiming at the problem of low recognition rate of single-agent in deep Q-learning for fault diagnosis of planetary gearbox, using multi-agent for strategy learning and fuzzy integral for fusing decision results of multiple-agent, a planetary gearbox fault diagnosis method based on multi-agent deep Q-learning and fuzzy integral was proposed.Firstly, the continuous wavelet transform (CWT) and S transform (ST) were performed for vibration signals to obtain the corresponding time-frequency feature matrix, and then using the original time domain data and the obtained time-frequency feature matrix, a multi-domain environmental state space was constructed to interact with multi-agent.Secondly, the original time-domain features, CWT time-frequency features and ST features returned by the environment space were taken as the corresponding agent state in interaction process.The Q function value of each agent was maximized with the deep Q-learning algorithm to obtain the optimal strategy.Finally, fuzzy integral was used to fuse the decision results of multi-agent, and obtain the final diagnosis results.The fault data of planetary gearbox were used to do verification and analysis.It was shown that the proposed planetary gearbox fault diagnosis method based on multi-agent deep Q-learning and fuzzy integral can effectively improve the diagnosis accuracy; its diagnosis results are better than those of the method based on single-agent deep Q-learning.

关键词

故障诊断 / 深度Q学习 / 多Agent / 模糊积分 / 行星齿轮箱

Key words

fault diagnosis / deep Q-learning / multi-agent / fuzzy integral / planetary gearbox

引用本文

导出引用
陈仁祥1,周君1,胡小林2,曾力1,陈才3,胡超超1. 多Agent深度Q学习和模糊积分的行星齿轮箱故障诊断[J]. 振动与冲击, 2021, 40(11): 147-153
CHEN Renxiang1, ZHOU Jun1, HU Xiaolin2, ZENG Li1, CHEN Cai3, HU Chaochao1. Fault diagnosis of planetary gearbox based on multi-Agent deep Q-learning and fuzzy integral[J]. Journal of Vibration and Shock, 2021, 40(11): 147-153

参考文献

[1]LEI Y, LIN J, ZUO M J, et al.Condition monitoring and fault diagnosis of planetary gearboxes: a review[J].Measurement, 2014, 48: 292-305.
[2]胡茑庆, 陈徽鹏, 程哲, 等.基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J].机械工程学报, 2019, 55(7):9-18.
HU Niaoqing, CHEN Huipeng, CHENG Zhe,et al.Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J].Journal of Mechanical Engineering,2019, 55(7):9-18.
[3]CHEN R X, HUANG X, YANG L X, et al.Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform[J].Computers in Industry, 2019, 106: 48-59.
[4]ZENG X Q, LIAO Y X, LI W X.Gearbox fault classification using S-transform and convolutional neural network[C]//2016 10th International Conference on Sensing Technology.Nanjing: IEEE, 2016.
[5]CAO L X, ZHANG J Y, WANG J Y, et al.Intelligent fault diagnosis of wind turbine gearbox based on long short-term memory networks[C]//2019 IEEE 28th International Symposium on Industrial Electronics.Vancouver:IEEE, 2019.
[6]LAKE B M, SALAKHUTDINOV R, TENENBAUM J B.Human-level concept learning through probabilistic program induction[J].Science, 2015, 350(6266): 1332-1338.
[7]MNIH V, KAVUKCUOGLU K, SILVER D, et al.Playing atari with deep reinforcement learning[C]//
Conference and Workshop on Neural Information Processing Systems.Lake Tahoe: Computer Science, 2013.
[8]MNIH V, KAVUKCUOGLU K, SILVER D, et al.Human-level control through deep reinforcement learning[J].Nature, 2015, 518(7540): 529-533.
[9]刘全, 翟建伟, 章宗长, 等.深度强化学习综述[J].计算机学报, 2018, 41(1):1-27.
LIU Quan, ZHAI Jianwei, ZHANG Zongzhang, et al.A survey on deep reinforcement learning[J].Chinese Journal of Computers,2018,41(1):1-27.
[10]林京, 屈梁生.基于连续小波变换的信号检测技术与故障诊断[J].机械工程学报, 2000, 36(12): 95-100.
LIN Jing, QU Liangsheng.Feature detection and fault diagnosis based on continuous wavelet transform[J].Journal of Mechanical Engineering, 2000, 36(12): 95-100.
[11]TAKAGI T, SUGENO M.Fuzzy identification of systems and its applications to modeling and control[J].Readings in Fuzzy Sets for Intelligent Systems, 1993, 15(1):387-403.
[12]张彼德, 田源, 邹江平, 等.基于Choquet模糊积分的水电机组振动故障诊断[J].振动与冲击, 2013,32(12):66-71.
ZHANG Bide,TIAN Yuan,ZOU Jiangping,et al.Vibration fault diagnosis of a Hydro-generating unit based on Choquet fuzzy integration[J].Journal of Vibration and Shock,2013,32(12):66-71.
[13]石东源, 熊国江, 陈金富, 等.基于径向基函数神经网络和模糊积分融合的电网分区故障诊断[J].中国电机工程学报, 2014(4):60-67.
SHI Dongyuan, XIONG Guojiang, CHEN Jinfu, et al.Divisional fault diagnosis of power grids based on RBF neural network and fuzzy integral fusion[J].Proceedings of the CSEE,2014(4):60-67.
[14]GRABISCH M, MUROFUSHI T, SUGENO M.Fuzzy measures and integrals: theory and applications[M].Heidelberg; Physica-Verlag, 2000.

PDF(1457 KB)

398

Accesses

0

Citation

Detail

段落导航
相关文章

/