为了研究竖直和倾斜情况下绝缘子的体型系数,在风洞中通过模型测力和自由风偏方法进行研究,获得了竖直情况绝缘子体型系数随风速和湍流度的变化,提出了利用自由风偏测试倾斜情况下绝缘子体型系数的方法,研究了自由风偏情况下复合绝缘子的脉动风偏特征和体型系数,给出了盘式和复合绝缘子体型系数的建议值。研究表明:竖直情况下绝缘子体型系数随着风速的增大呈减少的趋势;不同湍流度下绝缘子的体型系数比较接近;悬挂绝缘子在湍流下可见显著的正弦波动,在均匀流下波动并不显著;湍流场下悬挂绝缘子平均风偏角大于均匀流,且风速越大差距越显著;建议盘式绝缘子的体型系数取0.89(竖直情况),复合绝缘子的体型系数取0.93(竖直情况)和1.00(倾斜情况),该建议值与中国规范比较接近,小于IEC、EN和JEC规范的结果。
Abstract
In order to study shape coefficient of vertical and inclined insulators, the model force measurement and free wind deflection method were used in wind tunnel tests.The variation of shape coefficient of vertical insulators with wind speed and turbulence degree varying was obtained.The method of measuring shape coefficient of inclined insulators using free wind deflection was proposed, and fluctuating wind deflection characteristics and shape coefficient of composite insulators under free wind deflection were studied.Finally, the recommended values of shape coefficients for disc and composite insulators were given.The results showed that the shape coefficient of vertical insulator decreases with increase in wind speed; shape coefficients of insulator under different turbulence degrees are closer to each other; the suspended insulator has significant sinusoidal fluctuation under turbulence, but its fluctuation is not significant under uniform flow; the average wind deflection angle of suspended insulator under turbulence is larger than that under uniform flow, and the larger the wind speed, the more significant the difference; the recommended shape coefficient value for vertical disc insulator is 0.89, those for vertical composite insulator and inclined one are 0.93 and 1.00, respectively; these recommended values are closer to those in Chinese code and smaller than those in IEC, EN and JEC codes.
关键词
绝缘子 /
体型系数 /
风洞试验 /
脉动风偏 /
风偏角
{{custom_keyword}} /
Key words
insulator /
shape coefficient /
wind tunnel test /
fluctuating wind deflection /
wind deflection angle
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]龚坚刚.浙江电网跳线风偏跳闸的分析与措施[J].华东电力, 2007, 35(5):112-113.
GONG Jiangang.Line trips in Zhejiang power grid due to windage yaw of jumper wires and relevant countermeasures[J].East China Electric Power, 2007, 35(5):112-113.
[2]卞荣, 徐卿, 俞恩科, 等.台风作用下输电塔线体系多元状态监测及风偏可靠度分析[J].振动与冲击, 2020, 39(3):52-59.
BIAN Rong, XU Qing, YU Enke, et al. Multi-variate state monitoring and wind bias reliability analysis of a transmission tower-line system under action of typhoon[J].Journal of Vibration and Shock, 2020, 39(3):52-59.
[3]姚剑锋, 沈国辉, 楼文娟, 等.三维山体的风场特征及对输电塔风致响应的影响[J].振动与冲击, 2017, 36(18):78-84.
YAO Jianfeng, SHEN Guohui, LOU Wenjuan, et al.Wind field characteristics of 3-dimensional hills and their influence on the wind-induced responses of transmission towers[J].Journal of Vibration and Shock, 2017, 36(18):78-84.
[4]SHEN G H, YAO J F, LOU W J, et al.An experimental investigation of streamwise and vertical wind field on a typical three-dimensional hill[J].Applied Sciences, 2020, 10(4): 1463.
[5]沈国辉, 项国通, 邢月龙, 等.2种风场下格构式圆钢塔的天平测力试验研究[J].浙江大学学报(工学版), 2014, 48(4):704-710.
SHEN Guohui, XIANG Guotong, XING Yuelong, et al. Experimental investigation of steel latticed towers with cylinderical members based on force balance tests under two wind flows[J].Journal of Zhejiang University (Engineering Science), 2014, 48(4):704-710.
[6]楼文娟, 李天昊, 吕中宾, 等.多分裂子导线气动力系数风洞试验研究[J].空气动力学学报, 2015, 33(6):787-792.
LOU Wenjuan, LI Tianhao, L Zhongbin, et al.Wind tunnel test on aerodynamic coefficients of multi-bundled sub-conductors[J].Acta Aerodynamica Sinica, 2015, 33(6):787-792.
[7]架空输电线路荷载规范: DL/T 5551—2018[S].北京:中国计划出版社, 2018.
[8]张殿生.电力工程高压送电线路设计手册[M].北京:中国电力出版社, 2003.
[9]Overhead transmission lines design criteria:IEC 60826—2017[S].Geneva: International Electrotechnical Commission, 2017.
[10]Design standards on structures for transmissions:JEC-TR-00007—2015[S].Tokyo: Japanese Electrotechnical Committee, 2015.
[11]Overhead electrical lines exceeding AC 45 kV:EN 50341-1—2001[S].London: British Standard Institution, 2001.
[12]Guidelines for electrical transmission line structure loading:ASCE NO.74—2009[S].Virginia: American Society of Civil Engineers, 2010.
[13]Structural design actions part 2: wind actions:AS/NZS 1170.2—2011[S].Sydney: Standards Australia Limited/ Standards New Zealand, 2011.
[14]毛德坤.悬垂绝缘子串与跳线在风洞中的风偏试验[J].中国电机工程学报, 1988, 5:52-56.
MAO Dekun.Suspension insulator string and jumper wire tested in wind tunnel[J].Proceedings of the CSEE, 1988, 5:52-56.
[15]游溢, 晏致涛, 李新民, 等.多联绝缘子串阻力系数风洞试验研究[J].华南理工大学学报(自然科学版), 2018,46(9):66-72.
YOU Yi, YAN Zhitao, LI Xinmin, et al.Wind tunnel tests on drag coefficients of multiple-insulator strings[J].Journal of South China University of Technology (Nature Science Edition), 2018,46(9):66-72.
[16]朱赛伟.特高压绝缘子串在风荷载作用下力学特性的研究[D].北京:中国电力科学研究院, 2017.
[17]朱进, 何安清, 李涛, 等.车顶柱式复合绝缘子风洞试验与分析[J].电力机车与城轨车辆, 2009, 32(2):38-40.
ZHU Jin,HE Anqing,LI Tao,et al. Test and analysis of roof’s column composite insulator in wind tunnel[J].Electric Locomotives and Mass Transit Vehicles, 2009, 32(2):38-40.
[18]刘学军, 冯涛.隔离开关中支柱绝缘子的风载荷计算[J].高压电器, 2015, 51(5):83-88.
LIU Xuejun,FENG Tao. Wind load calculation of post insulator in disconnecting switch[J]. High Voltage Apparatus, 2015, 51(5):83-88.
[19]肖林海.特高压悬垂绝缘子串的风偏特性[D].武汉: 华中科技大学, 2013.
[20]闵绚, 文志科, 曾云飞, 等.脉动风作用下特高压绝缘子串的风偏特性[J].中国电力, 2016,49(3):65-71.
MIN Xuan, WEN Zhike, ZENG Yunfei, et al.Characteristics of windage yaw in UHV insulator strings under fluctuating wind[J].Electric Power, 2016, 49(3):65-71.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}