基于多项式拟合初值的动载荷识别修正算法

赵凤遥1,张建成1,葛巍1,姜金辉2,李寒雨1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (11) : 211-219.

PDF(2077 KB)
PDF(2077 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (11) : 211-219.
论文

基于多项式拟合初值的动载荷识别修正算法

  • 赵凤遥1,张建成1,葛巍1,姜金辉2,李寒雨1
作者信息 +

Dynamic load identification correction algorithm based on polynomial fitting initial value

  • ZHAO Fengyao1, ZHANG Jiancheng1, GE Wei1, JIANG Jinhui2, LI Hanyu1
Author information +
文章历史 +

摘要

针对Wilson-θ反分析法因初值敏感导致载荷识别结果不理想的问题,基于误差修正思想引入多项式拟合方法修正初始值,并对Wilson-θ反分析法做出改进。通过推导Wilson-θ反分析法误差传递公式,总结了初始误差对识别结果的影响原理,并利用多项式拟合方法计算位移趋势项实现对系统初始值的修正。结果表明,多项式拟合法可有效解决Wilson-θ反分析法动载荷识别的初值敏感问题,并具备一定的抗噪性能及较高的精度。

Abstract

Aiming at the problem of load identification results being not ideal due to initial value sensitivity of Wilson-θ inverse analysis method, the polynomial fitting method was introduced to correct initial value based on the idea of error correction to improve Wilson-θ inverse analysis method.Through deducing the error transfer formula of Wilson-θ inverse analysis method, the influencing principle of initial error on identification results was summarized, and the polynomial fitting method was used to calculate the displacement trend term to correct the initial value of the system.The results showed that the polynomial fitting method can effectively solve the initial value sensitivity problem of Wilson-θ inverse analysis method, and has a certain anti-noise performance and higher accuracy.

关键词

Wilson-&theta / 反分析法;初值敏感;多项式拟合;动载荷识别

Key words

Wilson-θ inverse analysis method / initial value sensitivity / polynomial fitting / dynamic load identification

引用本文

导出引用
赵凤遥1,张建成1,葛巍1,姜金辉2,李寒雨1. 基于多项式拟合初值的动载荷识别修正算法[J]. 振动与冲击, 2021, 40(11): 211-219
ZHAO Fengyao1, ZHANG Jiancheng1, GE Wei1, JIANG Jinhui2, LI Hanyu1. Dynamic load identification correction algorithm based on polynomial fitting initial value[J]. Journal of Vibration and Shock, 2021, 40(11): 211-219

参考文献

[1]
徐菁, 张方, 姜金辉, 等.基于拟静态初值的载荷识别数值修正算法[J].振动与冲击, 2016, 35 (2): 39-44.
XU Jing, ZHANG Fang, JIANG Jinhui, et al.Numerical correcting algorithm for load identification based on quasi-static initial value [J].Journal of Vibration and Shock, 2016, 35(2): 39-44.
[2]LIU J, SUN X S, HAN X, et al.Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method [J].Mechanical Systems & Signal Processing, 2015, 56/57: 35-54.
[3]许锋, 陈怀海, 鲍明.机械振动载荷识别研究的现状与未来[J].中国机械工程, 2002(6): 82-87.
XU Feng, CHEN Huaihai, BAO Ming.Force identification for mechanical vibration: state-of-the-art and prospect [J].China Mechanical Engineering, 2002(6): 82-87.
[4]毛伯永, 谢石林, 张希农.冲击载荷识别的瞬态统计能量分析方法[J].振动与冲击, 2013, 32 (14): 46-51.
MAO Boyong, XIE Shilin, ZHANG Xinong.Identification of impact load based on transient statistical energy analysis method [J].Journal of Vibration and Shock, 2013, 32(14): 46-51.
[5]范玉川, 黄清云, 鲁艳, 等.基于Newmark-β法的非线性体系动载荷识别[J].东北大学学报(自然科学版), 2019, 40(12): 1755-1759.
FAN Yuchuan, HUANG Qingyun, LU Yan, et al.Dynamic lad ientification of a nnlinear sstem bsed on Newmark-β mthod [J].Journal of Northeastern University (Natural Science), 2019, 40(12): 1755-1759.
[6]SUN Y T, LUO L F, CHEN K G, et al.A time-domain method for load identification using moving weighted least square technique [J].Computers & Structures, 2020, 234: 106254.
[7]杨智春, 贾有.动载荷的识别方法[J].力学进展, 2015, 45(1): 29-54.
YANG Zhichun, JIA You.The identification of dynamic loads[J].Advances in Mechanics, 2015, 45 (1): 29-54.
[8]MOHAMMADZADEH S, GHASSEMIEH M, PARK Y.Structure-dependent improved Wilson-θ method with higher order of accuracy and controllable amplitude decay [J].Applied Mathematical Modelling, 2017, 52: 417-436.
[9]赵凤遥, 张宝霞, 张根全.基于Wilson-θ法的动荷载识别[J].河南科学, 2009, 27(10): 1243-1246.
ZHAO Fengyao, ZHANG Baoxia, ZHANG Genquan.Dynamic load identification based on Wilson-θ method[J].Henan Science, 2009, 27(10): 1243-1246.
[10]徐菁, 张方, 姜金辉, 等.运用数值迭代的动载荷识别算法[J].振动工程学报, 2014, 27(5): 702-707.
XU Jing, ZHANG Fang, JIANG Jinhui, et al.An algorithm of dynamic load identification based on numerical iteration [J].Journal of Vibration Engineering, 2014, 27(5): 702-707.
[11]朱广荣, 陈国平, 张方, 等.基于Wilson-θ算法的动载荷识别及影响因素[J].振动、测试与诊断, 2012, 32(5): 709-713.
ZHU Guangrong, CHEN Guoping, ZHANG Fang, et al.Dynamic load identification based on Wilson-θ method and influence factors [J].Journal of Vibration, Measurement & Diagnosis, 2012, 32(5): 709-713.
[12]KIM J, KIM K, SOHN H.Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements [J].Mechanical Systems & Signal Processing, 2014, 42(1/2): 194-205.
[13]LEE H, HONG Y, PARK H.Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures [J].International Journal for Numerical Methods in Engineering, 2010, 82(4): 403-434.
[14]HONG Y, KIM H, LEE H.Reconstruction of dynamic displacement and velocity from measured accelerations using the variational statement of an inverse problem [J].Journal of Sound & Vibration, 2010, 329(23): 4980-5003.
[15]HONG Y, LEE S, LEE H.Design of the FEM-FIR filter for displacement reconstruction using accelerations and displacements measured at different sampling rates [J].Mechanical Systems & Signal Processing, 2013, 38(2): 460-481.
[16]缪惠全, 王闯, 李杰.加速度基线漂移频域处理方法的对比研究[J].振动与冲击, 2016, 35(13): 66-71.
MIAO Huiquan, WANG Chuang, LI Jie.Frequency domain processing methods for acceleration integrations baseline drift [J].Journal of Vibration and Shock, 2016, 35(13): 66-71.
[17]胡玉梅, 周英杰, 朱浩, 等.基于趋势项误差控制的频域积分算法研究与应用[J].振动与冲击, 2015, 34(2): 171-175.
HU Yumei, ZHOU Yingjie, ZHU Hao, et al.Integration algorithm based on trend-control of error in frequency domain [J].Journal of Vibration and Shock, 2015, 34(2): 171-175.
[18]陈太聪, 张奇.基于频谱能量形态拟合的加速度积分方法研究[J].振动与冲击, 2019, 38(13): 7-12.
CHEN Taicong, ZHANG Qi.Acceleration integration method based on frequency spectral energy morphological fitting [J].Journal of Vibration and Shock, 2019, 38(13): 7-12.
[19]张志, 孟少平, 周臻, 等.振动台试验加速度积分方法[J].振动、测试与诊断, 2013, 33(4): 627-633.
ZHANG Zhi, MENG Shaoping, ZHOU Zhen, et al.Numerical integration method of acceleration recodes for shaking table test [J].Journal of Vibration, Measurement & Diagnosis, 2013, 33(4): 627-633.
[20]容太平, 沈承虎, 袁中平, 等.用加速度传感器测量位移的原理与误差分析[J].华中理工大学学报(自然科学版), 2000, 28(5): 58-60.
RONG Taiping, SHEN Chenghu, YUAN Zhongping, et al.The principle of measuring the displacement with accelerometer and the error analysis [J].Journal of Huazhong University of Science and Technology(Natural Science Edition), 2000, 28(5): 58-60.
[21]林楠, 李东升, 李宏男.基于零初值的测试加速度积分速度与位移的方法[J].中国科学:技术科学, 2016, 46 (6): 602-614.
LIN Nan, LI Dongsheng, LI Hongnan.Novel integration method of measured acceleration to velocity and displacement based on zero initial condition [J].Scientia Sinica Technologica, 2016, 46(6): 602–614.
[22]陈为真, 汪秉文, 胡晓娅.基于时域积分的加速度信号处理[J].华中科技大学学报(自然科学版), 2010, 38(1): 1-4.
CHEN Weizhen, WANG Bingwen, HU Xiaoya.Acceleration signal processing by aumerical integration [J].Journal of Huazhong University of Science and Technology(Natural Science Edition), 2010, 38(1): 1-4.
[23]BARDELLA L, CARINI A, GENNA F.Time integration errors and some new functionals for the dynamics of a free mass [J].Computers & Structures, 2003, 81(24/25): 2361-2372.
[24]YANG J, LI J B, LIN G.A simple approach to integration of acceleration data for dynamic soil-structure interaction analysis [J].Soil Dynamics and Earthquake Engineering, 2006, 26(8): 725-734.
[25]高伟, 于开平, 盖晓男.L∞范数拟合正则化方法在飞行器动态载荷识别中的应用[J].振动与冲击, 2017, 36(9): 101-107.
GAO Wei, YU Kaiping, GAI Xiaonan.Application of L∞ norm fitting regularization method in dynamic load identification of space-crafts [J].Journal of Vibration and Shock, 2017, 36(9): 101-107.

PDF(2077 KB)

Accesses

Citation

Detail

段落导航
相关文章

/