一种双连杆-弹簧-曲面机构的QZS隔振器设计和研究

王志成,王神龙,余慧杰

振动与冲击 ›› 2021, Vol. 40 ›› Issue (11) : 220-229.

PDF(3337 KB)
PDF(3337 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (11) : 220-229.
论文

一种双连杆-弹簧-曲面机构的QZS隔振器设计和研究

  • 王志成,王神龙,余慧杰
作者信息 +

Design and research of QZS vibration isolator with double link-spring-curved surface mechanism

  • WANG Zhicheng, WANG Shenlong, YU Huijie
Author information +
文章历史 +

摘要

基于正负刚度并联原理,运用双连杆-弹簧-曲面作为负刚度机构、竖直弹簧作为正刚度机构,提出了一种准零刚度(quasi-zero stiffness ,QZS)隔振器的新构型。针对上述构型,通过静力分析,研究了系统的位移-刚度特性和位移-回复力特性,得到了系统静平衡下的QZS条件。此外,建立QZS系统的非线性动力学方程,应用谐波平衡法和龙格库塔法求解。针对不同的激励幅值、阻尼系数和QZS参数等因素,研究了系统动力学响应和传递率特性。理论研究表明,该QZS构型可以有效降低模型的共振频率与最大传递率幅值。基于隔振器的三维模型进行数值仿真和实验研究,发现提出的QZS构型拥有较好的低频隔振性能,并具备与线性系统相当的高频隔振性能。

Abstract

Based on the parallel connection principle of positive and negative stiffnesses, taking double link-spring-curved surface mechanism as negative stiffness mechanism and a vertical spring as positive stiffness mechanism, a new configuration of quasi-zero stiffness (QZS) vibration isolator was proposed.According to the above configuration, through static analysis, the displacement-stiffness characteristics and displacement-restoring force characteristics of QZS system were studied to obtain QZS condition under the system’s static equilibrium.Nonlinear dynamic equations of QZS system were established and solved with the harmonic balance method and Runge-Kutta method.Aiming at different excitation amplitudes, damping coefficients and QZS parameters, dynamic response and transmissibility characteristics of the system were studied.The theoretical study showed that the proposed QZS configuration can effectively reduce the system model’s resonance frequency and the maximum transmissivity amplitude.Finally, based on the 3-D model of QZS isolator, numerical simulation and test study showed that the proposed QZS configuration has better low-frequency vibration isolation performance, and has the same high-frequency vibration isolation performance as linear system.

关键词

双连杆-弹簧-曲面机构 / 准零刚度(QZS) / 谐波平衡法 / 龙格库塔法 / 传递率

Key words

double link-spring-curved surface mechanism / quasi-zero stiffness (QZS) / harmonic balance method / Runge-Kutta method / transmissibility

引用本文

导出引用
王志成,王神龙,余慧杰. 一种双连杆-弹簧-曲面机构的QZS隔振器设计和研究[J]. 振动与冲击, 2021, 40(11): 220-229
WANG Zhicheng, WANG Shenlong, YU Huijie. Design and research of QZS vibration isolator with double link-spring-curved surface mechanism[J]. Journal of Vibration and Shock, 2021, 40(11): 220-229

参考文献

[1]陆泽琦, 陈立群.非线性被动隔振的若干进展[J].力学学报, 2017, 49(3): 550-564.
LU Zeqi, CHEN Liqun.Some recent progresses in nonlinear passive isolations of vibrations[J].Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564.
[2]辛格雷苏?S?拉奥.机械振动[M]. 李欣业, 杨理诚, 译.5版.北海:清华大学出版社, 2016.
[3]CARRELLA A, BRENNAN M J, WATERS T P.Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J].Journal of Sound & Vibration, 2007, 301(3/4/5): 678-689.
[4]CARRELLA A, BRENNAN M J, KOVACIC I, et al.On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J].Journal of Sound & Vibration, 2009, 322(4/5): 707-717.
[5]CARRELLA A, BRENNAN M J, WATERS T P, et al.Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J].International Journal of Mechanical Sciences, 2012, 55(1): 22-29.
[6]KOVACIC I, BRENNAN M J, WATERS T P.A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic[J].Journal of Sound & Vibration, 2008, 315(3): 700-711.
[7]THANH D L, KYOUNG K A.A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J].Journal of Sound & Vibration, 2011, 330(26): 6311-6335.
[8]YANG T, LIU J Y, CAO Q J.Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting[J].Physica A: Statistical Mechanics and its Applications, 2018, 507: 358-373.
[9]YANG T, CAO Q J.Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities[J].Mechanical Systems and Signal Processing,2018, 103: 216-235.
[10]HAO Z F, CAO Q J, WIERCIGROCH M.Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses[J].Nonlinear Dynamics ,2017, 87(2): 987-1014.
[11]李强, 徐登峰, 李林,等.基于正负刚度并联永磁隔振器的隔振性能分析及实验验证[J].振动与冲击, 2019, 38(16): 100-107.
LI Qiang, XU Dengfeng, LI Lin, et al.Analysis and experiment of a magnetic levitation vibration isolator with the positive stiffness and the negative one in parallel[J].Journal of Vibration and Shock, 2019, 38(16): 100-107.
[12]DONG G X, ZHANG X N, XIE S L, et al.Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring[J].Mechanical Systems & Signal Processing, 2017, 86: 188-203.
[13]周加喜, 王心龙, 徐道临, 等.含凸轮-滚轮机构的准零刚度系统隔振特性实验研究[J].振动工程学报, 2015, 28(3): 449-455.
ZHOU Jiaxi, WANG Xinlong, XU Daolin, et al.Experimental research on vibration isolation characteristics of quasi-zero stiffness system with cam-roller mechanism[J].Journal of Vibration Engineering, 2015, 28(3): 449-455.
[14]王心龙, 周加喜, 徐道临.一类准零刚度隔振器的分段非线性动力学特性研究[J].应用数学和力学, 2014, 35(1): 50-62.
WANG Xinlong, ZHOU Jiaxi, XU Daolin.Research on the piecewise nonlinear dynamic characteristics of a class of quasi-zero stiffness vibration isolators[J].Applied Mathematics and Mechanics, 2014, 35(1): 50-62.
[15]王毅, 徐道临, 周加喜.滚球型准零刚度隔振器的特性分析[J].振动与冲击, 2015, 34(4): 142-147.
WANG Yi, XU Daolin, ZHOU Jiaxi.Characteristic analysis of a ball-type vibration isolator with quasi-zero-stiffness[J].Journal of Vibration and Shock, 2015, 34(4): 142-147.
[16]韩俊淑, 孙景工, 孟令帅.一种曲面-弹簧-滚子机构的非线性隔振器特性分析[J].振动与冲击, 2019, 38(3): 178-186.
HAN Junshu, SUN Jinggong, MENG Lingshuai.Design and characteristics analysis of a nonlinear vibration isolator using a curved surface-spring-roller mechanism as negative stiffness element[J].Journal of Vibration and Shock, 2019, 38(3): 178-186.
[17]LIU X T, HUANG X C, HUA H X.On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector[J].Journal of Sound & Vibration, 2013, 332(14): 3359-3376.
[18]孟令帅, 孙景工, 牛福, 等.新型准零刚度隔振系统的设计与研究[J].振动与冲击, 2014, 33(11): 195-199.
MENG Lingshuai, SUN Jinggong, NIU Fu, et al.Design and analysis of a novel quasi-zero stiffness vibration isolation system[J].Journal of Vibration and Shock, 2014, 33(11): 195-199.
[19]徐道临, 赵智, 周加喜.气动可调式准零刚度隔振器的设计及特性分析[J].湖南大学学报(自然科学版), 2013, 40(6): 47-52.
XU Daolin, ZHAO Zhi, ZHOU Jiaxi.Design and analysis of an adjustable pneumatic vibration isolator with quasi-zero-stiffness characteristic[J].Journal of Hunan University (Natural Science), 2013, 40(6): 47-52.
[20]SUN X T, JING X J.Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity[J].Mechanical Systems and Signal Processing,2015, 62/63: 149-163.
[21]SUN X T, XU J, WANG F, et al.Design and experiment of nonlinear absorber for equal-peak and de-nonlinearity[J].Journal of Sound and Vibration,2019, 449: 274-299.
[22]YANG G, ZOU H X, WANG S, et al.Large stroke quasi-zero stiffness vibration isolator using three-link mechanism[J].Journal of Sound and Vibration, 2020, 478: 115344.
[23]徐道临, 张月英, 周加喜, 等.一种准零刚度隔振器的特性分析与实验研究[J].振动与冲击, 2014, 33(11): 208-213.
XU Daolin, ZHANG Yueying, ZHOU Jiaxi, et al.Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness[J].Journal of Vibration and Shock, 2014, 33(11): 208-213.
[24]王勇, 李舜酩, 程春, 等.立方速度反馈控制的准零刚度隔振器动力学特性分析[J].振动工程学报, 2016, 29(2): 305-313.
WANG Yong, LI Shunming, CHENG Chun, et al.Dynamic analysis of a quasi-zero-stiffness vibration isolator with cubic velocity feedback control[J].Journal of Vibration Engineering, 2016, 29(2): 305-313.
[25]WANG X J, LIU H, CHEN Y Q, et al.Beneficial stiffness design of a high-static-low-dynamic-stiffness vibration isolator based on static and dynamic analysis[J].International Journal of Mechanical Sciences, 2018, 142/143:235-244.
[26]ZHOU J, XU D L, BISHOP S.A torsion quasi-zero stiffness vibration isolator[J].Journal of Sound & Vibration, 2015, 338:121-133.

PDF(3337 KB)

533

Accesses

0

Citation

Detail

段落导航
相关文章

/