正三角形排列刚性耦合三圆柱涡激振动特性及尾涡模式

张晓娜1,及春宁1,2,陈威霖1,许栋1,2,张志猛1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 132-142.

PDF(2600 KB)
PDF(2600 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 132-142.
论文

正三角形排列刚性耦合三圆柱涡激振动特性及尾涡模式

  • 张晓娜1,及春宁1 ,2,陈威霖1,许栋1,2,张志猛1
作者信息 +

Vortex-induced vibration features and wake modes of three rigidly coupled circular cylinders in equilateral triangular arrangements

  • ZHANG Xiaona1,JI Chunning1,2,CHEN Weilin1,XU Dong1,2,ZHANG Zhimeng1
Author information +
文章历史 +

摘要

采用基于嵌入式迭代的浸入边界法对等边三角形排列的刚性耦合三圆柱涡激振动进行了数值模拟研究。其中一个圆柱在上游放置,另外两个圆柱并排放置于下游,圆柱间刚性连接,系统仅在横向自由振动。圆柱间距比L*分别为1.0、1.6、2.5和4.0,雷诺数为Re=100,质量比为m*=2.0,折合流速为Ur=3.0~30.0。分析了不同间距比下圆柱振幅、流体力、振动频率和脱涡模式等。研究发现,随Ur的增大,各间距比下的振动响应均可划分为初始分支(initial branch,IB)、下端分支(lower branch,LB)和非锁定区域(desynchronized region,DS)。其中,非锁定区域又可进一步分为前非锁定区域(DS1)和后非锁定区域(DS2)。随折合流速的增大,圆柱振幅整体上先增后减,而随间距比的增大,圆柱振幅则先减后增。圆柱的最大振幅(A*=1.11)出现在L*=1.0、Ur=8.0处。当L*=1.0、1.6和2.5时,圆柱振动存在锁定区间,振动频率锁定在固有频率附近,而L*=4.0时,圆柱的振动频率随折合流速增大线性增大,不存在锁定区间。当L*=2.5时,在DS2分支上,圆柱振动出现了两个强度相当、频率不同的分量,分别为低频驰振分量与高频涡振分量,而且由于复杂的柱间流体结构使得三圆柱升力频率存在较大差异。当L*=1.6时,在DS分支上,圆柱下游出现宽-窄尾流,导致了下游圆柱所受升阻力均值和升力均方根不相等。

Abstract

Vortex-induced vibrations (VIV) of three rigidly coupled circular cylinders in equilateral triangular arrangements were numerically investigated by using the iterative immersed boundary method.The three cylinders, with one placed upstream and the other two downstream side-by-side, are free to oscillate only in the cross-flow direction.The normalized spacings between the cylinders are L*=1.0, 1.6, 2.5 and 4.0.The Reynolds number is Re=100, the mass ratio is m*=2.0, and the reduced velocity is Ur=3.0-30.0.Characteristics of the vibration amplitudes, fluid forces, vibration frequencies and the vortex-shedding modes were investigated.It was found that with the increment of the reduced velocity, the vibration responses at different L* can be categorized as the initial branch (IB), the lower branch (LB) and the desynchronized region (DS) which is further divided into the front desynchronized region (DS1) and the rear desynchronized region (DS2).With the increasing reduced velocity, the vibration amplitudes show a first-increase-then-decrease pattern as a whole, while with the increasing spacing ratio, the vibration amplitudes display a first-decrease-then-increase pattern.The maximum amplitude (A* = 1.11) is achieved at L* = 1.0 and Ur = 8.0.At L* = 1.0, 1.6 and 2.5, the vibration responses show the lock-in region where the vibration frequency locks onto the natural frequency of the cylinders, while at L* = 4.0, the vibration frequency of the cylinder increases linearly with the increasing reduced velocity, and no obvious lock-in occurs.Two comparable vibration components with different frequencies exist in the DS2 branch at L*=2.5, and they are the low-frequency galloping component and the high-frequency VIV component, and the lift frequencies of three cylinders are obviously different because of complex gap flow between cylinders.In the DS branch of L* = 1.6, the wake behind two downstream cylinders shows a wide-narrow pattern, which leads to the mean drag and mean and r.m.s.lift of two downstream cylinders are not identical.

关键词

涡激振动 / 圆柱 / 刚性耦合 / 浸入边界法 / 三角排列

Key words

vortex-induced vibration / circular cylinder / rigidly coupled / immersed boundary method / triangular arrangement

引用本文

导出引用
张晓娜1,及春宁1,2,陈威霖1,许栋1,2,张志猛1. 正三角形排列刚性耦合三圆柱涡激振动特性及尾涡模式[J]. 振动与冲击, 2021, 40(12): 132-142
ZHANG Xiaona1,JI Chunning1,2,CHEN Weilin1,XU Dong1,2,ZHANG Zhimeng1. Vortex-induced vibration features and wake modes of three rigidly coupled circular cylinders in equilateral triangular arrangements[J]. Journal of Vibration and Shock, 2021, 40(12): 132-142

参考文献

[1]WILLIAMSON C H K, ROSHKO A.Vortex formation in the wake of an oscillating cylinder[J].Journal of Fluids and Structures, 1988, 2(4): 355-381.
[2]KHALAK A, WILLIAMSON C H K.Investigation of the relative effects of mass and damping in vortex-induced vibration of a circular cylinder[J].Journal of Wind Engineering and Industrial Aerodynamics,1997, 69/70/71: 341-350.
[3]潘志远.海洋立管涡激振动机理与预报方法研究[D].上海:上海交通大学, 2006.
[4]许玉旺.海洋立管涡激振动频域和时域预报方法研究[D].上海: 上海交通大学, 2014.
[5]SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J].Journal of Fluids and Structures, 2004, 19(4): 389-447.
[6]GABBAI R D, BENAROYA H.An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J].Journal of Sound and Vibration, 2005, 282(3/4/5): 575-616.
[7]BEARMAN P W.Circular cylinder wakes and vortex-induced vibrations[J].Journal of Fluids & Structures, 2011, 27(5/6): 648-658.
[8]WILLIAMSON C H K, GOVARDHAN R.A brief review of recent results in vortex-induced vibrations[J].Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 713-735.
[9]KHALAK A, WILLIAMSON C H K.Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J].Journal of Fluids & Structures, 1999, 13(7/8): 813-851.
[10]WILLIAMSON C H K, GOVARDHAN R.Vortex-Induced vibrations[J].Annual Review of Fluid Mechanics, 2004, 36(1): 413-455.
[11]PRASANTH T K, MITTAL S.Vortex-induced vibrations of a circular cylinder at low Reynolds numbers[J].Journal of Fluids Mechanics, 2007, 594: 463-491.
[12]PRASANTH T K, PREMCHANDRAN V, MITTAL S.Hysteresis in vortex-induced vibrations: critical blockage and effect of m*[J].Journal of Fluid Mechanics, 2011, 671: 207-225.
[13]BANSAL M S, YARUSEVYCH S.Experimental study of flow through a cluster of three equally spaced cylinders[J].Experimental Thermal and Fluid Science, 2017, 80: 203-217.
[14]LAM K, CHEUNG W C.Phenomena of vortex shedding and flow interference of three cylinders in different equilateral arrangements[J].Journal of Fluid Mechanics, 1988, 196: 1-26.
[15]TATSUNO M, AMAMOTO H, ISHII K.Effects of interference among three equidistantly arranged cylinders in a uniform flow Translated from Nagare14 (1995) 3650[J].Fluid Dynamics Research, 1998, 22(5): 297-315.
[16]KUBO Y, NAKAHARA T, KATO K.Aerodynamic behavior of multiple elastic circular cylinders with vicinity arrangement[J].Journal of Wind Engineering & Industrial Aerodynamics, 1995, 54/55: 227-237.
[17]CHEN W, JI C, WILLIAMS J, et al.Vortex-induced vibrations of three tandem cylinders in laminar cross-flow: Vibration response and galloping mechanism[J].Journal of Fluids and Structures, 2018, 78: 215-238.
[18]徐枫, 欧进萍.正三角形排列三圆柱绕流与涡致振动数值模拟[J].空气动力学学报, 2010, 28(5): 582-590.
XU Feng, OU Jinping.Numerical simulation of vortex-induced vibration of three cylinders subjects to a cross flow in equilateral arrangement[J].Acta Aerodynamica Sinica, 2010, 28(5): 582-590.
[19]ZHAO M. Flow induced vibration of two rigidly coupled circular cylinders in tandem and side-by-side arrangements at a low Reynolds number of 150[J].Physics of Fluids, 2013, 25(12): 123601.
[20]ZHAO M, YAN G.Numerical simulation of vortex-induced vibration of two circular cylinders of different diameters at low Reynolds number[J].Physics of Fluids, 2013, 25(8): 618-633.
[21]HAN P, PAN G.Numerical simulation of flow-induced motion of three rigidly coupled cylinders in equilateral-triangle arrangement[J].Physics of Fluids, 2018,30(12): 125107.
[22]HAN P, PAN G, JIN Z.Vortex induced vibration of three rigidly coupled cylinders in equilateral triangle arrangement at small spacing ratio[J].Oceans, 2018(10): 1-8.
[23]JI C, MUNJIZA A, WILLIAMS J.A novel iterative direct-forcing immersed boundary method and its finite volume applications[J].Journal of Computational Physics, 2012, 231: 1797-1821.
[24]CHEN W, JI C, XU W, et al.Response and wake patterns of two side-by-side elastically supported circular cylinders in uniform laminar cross-flow[J].Journal of Fluids and Structures, 2015, 55: 218-236.
[25]KHALAK A, WILLIAMSON C H K.Dynamics of a hydroelastic cylinder with very low mass and damping[J].Journal of Fluids and Structures, 1996, 10(5): 455-472.
[26]CHEN W, JI C, ALAM M, et al.Numerical simulations of flow past three circular cylinders in equilateral-triangular arrangements[J].Journal of Fluid Mechanics, 2020,891:A14.
[27]CHEN W, JI C, XU D.et al.Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow[J].Wind and Structures, 2019, 29(1): 43-53.
[28]NAVROSE N, MIITTAL S.Lock-in in vortex-induced vibration[J].Journal of Fluid Mechanics, 2016, 794: 565-594.
[29]CHEN W, JI C, WANG R, et al.Flow-induced vibrations of two side-by-side circular cylinders: Asymmetric vibration, symmetry hysteresis and near-wake patterns[J].Ocean Engineering, 2015, 110: 244-257.
[30]BRANKOVIC M.Vortex-induced vibration attenuation of circular with low mass and damping[D].London: Imperial College London, 2004.
[31]陈威霖, 及春宁.单圆柱涡激振动中的振幅不连续和相位切换现象研究[J].水动力学研究与进展(A辑), 2016, 31(4): 441-448.
CHEN Weilin, JI Chunning.Vibration amplitude discontinuity and phase jump of vortex-induced vibration of an isolated circular cylinder[J].Chinese Journal of Hydrodynamics, 2016, 31(4): 441-448.
[32]JI C, XIAO Z, WANG Y et al.Numerical investigation on vortex-induced vibration of an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method[J].International Journal of Computational Fluid Dynamics, 2011, 25(4): 207-221.
[33]KUMAR B, MITTAL S.On the origin of the secondary vortex street[J].Journal of Fluid Mechanics, 2012, 711: 641-666.
[34]JIANG H, CHENG L.Transition to the secondary vortex street in the wake of a circular cylinder[J].Journal of Fluid Mechanics, 2019, 867: 691-722.

PDF(2600 KB)

Accesses

Citation

Detail

段落导航
相关文章

/