基于自适应连续小波模极大值算法的车轮擦伤定量评估

宋颖1,2,施文杰1,孙宝臣3

振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 168-178.

PDF(2998 KB)
PDF(2998 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 168-178.
论文

基于自适应连续小波模极大值算法的车轮擦伤定量评估

  • 宋颖1,2,施文杰1,孙宝臣3
作者信息 +

Evaluation of railway wheel-flat via adaptive continuous wavelet transform modulus maximum algorithm

  • SONG Ying1,2,SHI Wenjie1,SUN Baochen3
Author information +
文章历史 +

摘要

为实现高速动车组车轮踏面擦伤长度定量评估,提出了一种自适应连续小波模极大值算法,应用到基于轴箱振动加速度信号的车轮擦伤状态识别与损伤评估。利用连续小波变换系数模极大值对自适应滤波后的轴箱振动加速度信号突变点进行定位,从而建立擦伤车轮脱离钢轨腾空运行时间与擦伤长度及其影响参数的关系模型。仿真实例结果表明,该方法可在车辆高速运行时实现车轮擦伤程度的定量识别。与其它文献识别结果对比分析表明,该方法原理简单、计算结果精度高。

Abstract

In order to evaluate quantitatively wheel-flat length of high-speed EMUs, an adaptive continuous wavelet modulus maximum algorithm was proposed, applying to detect wheel-flat based on axle box vibration acceleration.The continuous wavelet modulus maximum was used to detect abrupt change points of adaptive filtered axle box acceleration signals, and the relationship between wheel-rail detachment time and wheel-flat length and its influence parameters was established.The simulation results indicate that this approach is effective to identify and quantitatively assess the state of railway wheel-flat at high speed operation.Compared with traditional methods, this algorithm has brief principle and accurate results.

关键词

车轮擦伤 / 自适应滤波器 / 连续小波变换 / 模极大值 / 定量评估

Key words

wheel flat / adaptive filter / continuous wavelet transform / modulus maximum / evaluation

引用本文

导出引用
宋颖1,2,施文杰1,孙宝臣3. 基于自适应连续小波模极大值算法的车轮擦伤定量评估[J]. 振动与冲击, 2021, 40(12): 168-178
SONG Ying1,2,SHI Wenjie1,SUN Baochen3. Evaluation of railway wheel-flat via adaptive continuous wavelet transform modulus maximum algorithm[J]. Journal of Vibration and Shock, 2021, 40(12): 168-178

参考文献

[1]郇庆新.车轮踏面擦伤的调查分析[J].无线互联科技, 2012,(8): 84.
HUAN Qingxin.Wheel-flat investigation and analysis[J].Wireless Internet Technology, 2012(8): 84.
[2]JERGUS J, ODENMARCK C, LUNDN R, et al.Full-scale railway wheel flat experiments[J].Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1999, 213(1): 1-13.
[3]陈享成, 王炎孝, 杨占平.再论修改车轮扁疤容许限度标准势在必行[J].铁道技术监督, 2006, 34(3): 10-12.
CHEN Xiangcheng, WANG Yanxiao, YANG Zhanping.It is vital to modify the standard on allowable limits of wheel flat[J].Railway Quality Control, 2006, 34(3): 10-12.
[4]STRATMAN B, LIU Y M, MAHADEVAN S.Structural health monitoring of railroad wheels using wheel impact load detectors[J].Journal of Failure Analysis and Prevention, 2007, 7(3): 218-225.
[5]史红梅, 赵蓉, 余祖俊, 等.基于钢轨振动响应分析的车轮扁疤检测方法研究[J].振动与冲击, 2016, 35(10): 24-28.
SHI Hongmei, ZHAO Rong, YU Zujun, et al.Detection method for wheel flats based on rail vibration responses analysis[J].Journal of Vibration and Shock, 2016, 35(10): 24-28.
[6]BRACCIALI A, CASCINI G.Detection of corrugation and wheelflats of railway wheels using energy and cepstrum analysis of rail acceleration[J].Proceedings of the I MECH E.Part F: Journal of Rail and Rapid Transit, 1997, 211(2): 109-116.
[7]BELOTTI V, CRENNA F, RINALDO C, et al.Wheel-flat diagnostic tool via wavelet transform[J].Mechanical Systems and Signal Processing, 2005, 20(8): 1953-1966.
[8]XING Z Y, CHEN Y J, WANG X H, et al.Online detection system for wheel-set size of rail vehicle based on 2D laser displacement sensors[J].Optik-International Journal for Light and Electron Optics, 2016, 127(4): 1695-1702.
[9]BRIZUELA J, FRITSCH C, IBEZ A.Railway wheel-flat detection and measurement by ultrasound[J].Transportation Research Part C, 2011, 19(6): 975-984.
[10]LI Y F, LIU J X, WANG Y, et al.Railway wheel flat detection based on improved empirical mode decomposition[J].Shock and Vibration, 2016(4): 1-14.
[11]BRIZUELA J, IBAEZ A, NEVADO P, et al.Railway wheels flat detector using doppler effect[J].Physics Procedia, 2010, 3(1): 811-817.
[12]陈安华, 余小华, 黄采伦.Hilbert-Huang变换在列车踏面故障识别中的应用[J].电子测量与仪器学报, 2009, 23(8): 90-94.
CHEN Anhua, YU Xiaohua, HUANG Cailun.Application of Hilbert-Huang transform in fault identification of wheel tread[J].Journal of Electronic Measurement and Instrument, 2009, 23(8): 90-94.
[13]LI Z J, WEI L, DAI H Y, et al.Identification method of wheel flat based on Hilbert-Huang transform[J].Journal of Traffic and Transportation Engineering, 2012, 12(4): 33-41.
[14]DING J, LIN J, WANG G, et al.Time-frequency analysis of wheel-rail shock in the presence of wheel flat(Article)[J].Journal of Traffic and Transportation Engineering (English Edition), 2014, 1(6): 457-466.
[15]廖里程, 梅劲松, 赵阳.机车车轮踏面擦伤数据处理算法的研究[J].电子测量技术, 2015, 38(5): 114-118.
LIAO Licheng, MEI Jinsong, ZHAO Yang.Research on locomotive wheel tread irregularities date processing algorithm[J].Electronic Measurement Technology, 2015, 38(5): 114-118.
[16]邓文豪, 金炜东.一种基于自适应形态提升小波的车轮踏面擦伤识别新方法[J].振动与冲击, 2015, 34(21): 45-48.
DENG Wenhao, JIN Weidong.An improved adaptive morphological gradient lifting wavelet method for detecting high-speed train wheel tread scratch[J].Journal of Vibration and Shock, 2015, 34(21): 45-48.
[17]JIA S, DHANASEKAR M.Detection of rail wheel flats using wavelet approaches[J].Structural Health Monitoring, 2007, 6(2): 121-131.
[18]李奕璠, 刘建新, 李忠继.基于Hilbert-Huang变换的列车车轮失圆故障诊断[J].振动、测试与诊断, 2016, 36(4): 734-739.
LI Yifan, LIU Jianxin, LI Zhongji.The fault diagnosis method of railway out-of-round wheels using Hilbert-Huang transform[J].Journal of Vibration ,Measurement and Diagnosis, 2016, 36(4): 734-739.
[19]王其昌.车轮扁疤冲击分析[J].西南交通大学学报, 1991(4): 45-48.
WANG Qichang.Analysis of impact influence of wheel tread flat spot on railway track[J].Journal of Southwest Jiaotong University, 1991(4): 45-48.
[20]刘国云, 曾京, 邬平波, 等.车轮扁疤所引起的车辆系统振动特性分析[J].机械工程学报, 2020, 56(8): 182-189.
LIU Guoyun, ZENG Jing, WU Pingbo, et al.Vibration characteristic analysis of vehicle systems due to wheel flat[J].Journal of Mechanical Engineering, 2020, 56(8): 182-189.
[21]Steenbergen M J M M.The role of the contact geometry in wheel-rail impact due to wheel flats[J].Vehicle System Dynamics, 2007, 45(12): 1097-1116.
[22]周艳, 周少玲, 蔡冰涛, 等.用于光纤水听器降噪的自适应滤波器[J].光纤与电缆及其应用技术, 2014(3): 37-40.
ZHOU Yan, ZHOU Shaoling, CAI Bingtao, et al.The adaptive filter using in fiber hydrophone for noise cancellation[J].Optical Fiber and Electric Cable, 2014(3): 37-40.
[23]MALLAT S, HWANG W L.Singularity detection and processing with wavelets[J].IEEE Transactions on Information Theory, 1992, 38(2): 617-643.
[24]SONG Y, DU Y L, ZHANG X M, et al.Evaluating the effect of wheel polygons on dynamic track performance in high-speed railway systems using co-simulation analysis[J].Applied Sciences, 2019, 9(19): 4165.
[25]戚壮, 李芾, 丁军君, 等.高速动车组空气弹簧横向非线性动力学模型研究[J].中国铁道科学, 2014, 35(6): 111-118.
QI Zhuang, LI Fu, DING Junjun, et al.Lateral nonlinear dynamics model of air spring for high speed EMU[J].China Railway Science, 2014, 35(6): 111-118.
[26]刘增华, 李芾, 黄运华.空气弹簧系统垂向刚度特性的有限元分析[J].西南交通大学学报, 2006(6): 700-704.
LIU Zenghua, LI Fu, HUANG Yunhua.Finite element analysis of vertical stiffness of air spring system[J].Journal of Southwest JiaoTong University, 2006(6): 700-704.
[27]王业, 曾京.转臂定位节点非线性特性对动车组动力学性能的影响[J].机械, 2019, 46(7): 17-20.
WANG Ye, ZENG Jing.The Effect of nonlinear characteristics of rotating arm positioning nodes on the dynamic performance of EMUs[J].Mechanical, 2019, 46(7): 17-20.

[28]中国铁路总公司编.铁路技术管理规程高速铁路部分[M].北京: 中国铁道出版社, 2014.
[29]高建敏,翟婉明.高速铁路钢轨焊接区不平顺的动力效应及其安全限值研究[J].中国科学: 技术科学, 2014, 44: 697-706.
GAO J M, ZHAI W M.Dynamic effect and safety limits of rail weld irregularity on high-speed railways (in Chinese)[J].Sci.Sin.Tech., 2014, 44: 697-706.
[30]WANG R, CROSBEE D, BEVEN A, et al.Vibration-based detection of wheel flat on a high-speed train[M]∥Advances in Asset Management and Condition Monitoring.Springer, Cham, 2020.
[31]金学松. 高速轮轨磨耗机理及减磨控制技术措施研究[R].北京: 中国铁道科学研究院, 2016

PDF(2998 KB)

Accesses

Citation

Detail

段落导航
相关文章

/