[1]胡爱军,赵军,孙尚飞,等.基于谱峭度和最大相关峭度解卷积的滚动轴承复合故障特征分离方法[J].振动与冲击,2019,38(4):158-164
HU Aijun, ZHAO Jun, SUN Shangfei, et al.A compound fault features separation method of rolling bearing based on spectral kurtosis combined with maximum correlated kurtosis deconvolution[J].Journal of Vibration and Shock,2019,38(4):158-164.
[2]LIU Haiyang, HUANG Weiguo, WANG Shibin, et al.Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection[J].Signal Processing, 2014, 96: 118-124.
[3]丁康,黄志东,林慧斌.一种谱峭度和 Morlet小波的滚动轴承微弱故障诊断方法[J].振动工程学报,2014,27(1):129-135.
DING Kang, HUANG Zhidong, LIN Huibin.A weak fault diagnosis method for rolling element bearings based on Morlet wavelet and spectral kurtosis[J].Journal of Vibration Engineering, 2004, 27(1):129-135.
[4]YU Dejie, CHENG Junsheng, YANG Yu.Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J].Mechanical Systems and Signal Processing, 2005, 19(2): 259-270.
[5]LIU Huanhuan, HAN Minghong.A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings[J].Mechanism and Machine Theory, 2014, 75: 67-78.
[6]WANG Hongchao, CHEN Jin, DONG Guangming.Feature extraction of rolling bearing’s early weak fault based on EEMD and tunable Q-factor wavelet transform[J].Mechanical Systems and Signal Processing, 2014, 48: 103-119.
[7]ZHENG Jinde, CHENG Junsheng, YANG Yu.A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy[J].Mechanism and Machine Theory, 2013, 70: 441-453.
[8]CHEN Zhuyun, LI Weihua.Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J].IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1693-1702.
[9]程军圣,张亢,杨宇.局部均值分解方法及其在滚动轴承故障诊断中的应用[J].中国机械工程,2009,20(22):2710-2716.
CHENG Junsheng, ZHANG Kang, YANG Yu.Local mean decomposition method and its application to roller bearing fault diagnosis[J].China Mechanical Engineering, 2009,20(22): 2710-2716.
[10]GOLDMAN P, AGNES M, Application of full spectrum to rotating machinery diagnostics[J].Orbit, First Quarter, 1999: 17-21.
[11]QU L, LIU X, PEYRONNE G, et al.The holospectrum: A new method for rotor surveillance and diagnosis[J].Mechanical Systems & Signal Processing, 2003(3): 255-267.
[12]韩捷,石来德.全矢谱技术及工程应用[M].北京:机械工业出版社,2008.
[13]巩晓赟.基于全矢谱的非平稳故障诊断关键技术研究[D].郑州:郑州大学,2013
[14]黄传金,邬向伟,曹文思,等.基于 LMD 的全矢包络技术及其在 TRT 振动故障诊断中的应用[J].电力自动化设备,2015,35(2):168-174.
HUANG Chuanjin, WU Xiangwei, CAO Wensi, et al.LMD-based full vector envelope technique and its application in TRT vibration fault diagnosis[J].Electric Power Automation Equipment,2015,35(2):168-174
[15]ZHAO X M, PATEL T H, ZUO M J.Multivariate EMD and full spectrum based condition monitoring for rotating machinery[J].Mechanical Systems and Signal Processing, 2012(27): 712-728
[16]黄传金,宋海军,秦娜.BEMD全矢包络谱及其在TRT故障诊断中的应用[J].电力自动化设备,2018,38(1):184-192
HUANG Chuanjin, SONG Haijun, QIN Na.Full envelope spectrum based on BEMD and its applications in TRT fault diagnosis[J].Electric Power Automation Equipment, 2018,38(1):184-192.
[17]黄传金,孟雅俊,雷文平,等.复局部均值分解全矢包络技术及其在转子故障特征提取中的应用[J].机械工程学报,2016,52(7):69-78.
HUANG Chuanjin, MENG Yajun, LEI Wenping, et al.Full vector envelope technique based on complex local mean decomposition and its application in fault feature extraction for rotor system[J].Journal of Mechanical Engineering, 2016, 52(7):69-78.
[18]WANG Biao, LEI Yaguo, LI Naipeng, et al.A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J].IEEE Transactions on Reliability, 2018: 1-12.