基于变分模态分解和最大重叠离散小波包变换的齿轮信号去噪方法

周小龙1,徐鑫莉2,王尧1,刘薇娜3,姜振海4,马风雷4

振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 265-274.

PDF(2381 KB)
PDF(2381 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 265-274.
论文

基于变分模态分解和最大重叠离散小波包变换的齿轮信号去噪方法

  • 周小龙1,徐鑫莉2,王尧1,刘薇娜3,姜振海4,马风雷4
作者信息 +

A gear signal de-noising method based on variational mode decomposition and maximal overlap discrete wavelet packet transform

  • ZHOU Xiaolong1, XU Xinli2, WANG Yao1, LIU Weina3, JIANG Zhenhai4, MA Fenglei4
Author information +
文章历史 +

摘要

针对齿轮故障信号易受噪声干扰导致故障特征难以提取的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和最大重叠离散小波包变换(maximal overlap discrete wavelet packet transform,MODWPT)相结合的信号去噪方法。采用VMD方法将齿轮振动信号分解成一系列不同中心频率的固有模态函数(intrinsic mode function,IMF),对VMD分解过程中影响其精度的主要参数选择方法进行了探究,提出相关参数的选取依据。结合能量熵增量-频域互相关系数准则以剔除分解出的高频噪声和虚假干扰成分;采用MODWPT方法对包含高频噪声的IMF分量进行去噪,以进一步提升信号的去噪效果和性能指标;最后将去噪后高频IMF分量同表征信号自身特征的敏感模态分量重构为去噪信号。通过仿真信号和齿轮断齿故障信号的分析,证明了所提方法的有效性和实用性。

Abstract

Aiming at the problem that gear vibration signal is easily affected by noise and it is difficult to extract the fault feature of it, a method for gear vibration signal de-noising based on variational mode decomposition (VMD) and maximal overlap discrete wavelet packet transform (MODWPT) was proposed.Firstly, VMD was used to decompose the gear vibration signal into a number of intrinsic mode functions (IMFs) in different center frequency scales.For this method, the parameter selection that affects the accuracy of VMD decomposition has been deeply studied, and the solution to this problem was given.Then, a joint de-noising algorithm based on the criterion of energy entropy increment and frequency domain cross correlation coefficient was used to eliminate high frequency noise components and false components, in order to improve the de-noising effect and performance index.Finally, the high frequency noise components were decomposed by MODWPT, the high frequency IMF component after de-noising and the IMF components representing the characteristics of the signal itself reconstructed the de-noising signal.This method was applied in fault diagnosis of simulation signal and measured gear breakage fault signal.The results proved the effectiveness and practicality of the proposed method.

关键词

变分模态分解 / 最大重叠离散小波包变换 / 去噪 / 齿轮 / 特征提取

Key words

variational mode decomposition / maximal overlap discrete wavelet packet transform / de-noising / gear / feature extraction

引用本文

导出引用
周小龙1,徐鑫莉2,王尧1,刘薇娜3,姜振海4,马风雷4. 基于变分模态分解和最大重叠离散小波包变换的齿轮信号去噪方法[J]. 振动与冲击, 2021, 40(12): 265-274
ZHOU Xiaolong1, XU Xinli2, WANG Yao1, LIU Weina3, JIANG Zhenhai4, MA Fenglei4. A gear signal de-noising method based on variational mode decomposition and maximal overlap discrete wavelet packet transform[J]. Journal of Vibration and Shock, 2021, 40(12): 265-274

参考文献

[1]丁康, 李魏华, 朱晓勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2006.
[2]安邦, 潘宏侠, 张媛, 等.应用VMD和多参数融合的齿轮箱故障诊断[J].组合机床与自动化加工技术, 2014(4):92-95.
AN Bang, PAN Hongxia, ZHANG Yuan, et al.Research on gearbox fault diagnosis based on VMD and multi-parameter fusion[J].Modular Machine Tool & Automatic Manufacturing Technique, 2014(4): 92-95.
[3]何田, 林意洲, 郜普刚, 等.局部均值分解在齿轮故障诊断中的应用[J].振动与冲击, 2011, 36(6): 196-201.
HE Tian, LIN Yizhou, GAO Pugang, et al.Application of local mean decomposition in gear fault diagnosis[J].Journal of Vibration and Shock, 2011, 36(6): 196-201.
[4]HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceeding of the Royal Society of London-Series A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903-995.
[5]李琳, 张永祥, 明廷涛.EMD降噪的关联维数在齿轮故障诊断中的应用研究[J].振动与冲击, 2009, 28(4):145-148.
LI Lin, ZHANG Yongxiang, MING Tingtao.Study on the diagnosis of gear based on correlation dimension pre-conducted by EMD[J].Journal of Vibration and Shock, 2009, 28(4): 145-148.
[6]邵忍平, 曹精明, 李永龙.基于EMD小波阈值去噪和时频分析的齿轮故障模式识别与诊断[J].振动与冲击, 2012, 31(8): 96-101.
SHAO Renping, CAO Jingming, LI Yonglong.Gear fault pattern identification and diagnosis using Time-Frequency Analysis and wavelet de-noising based on EMD[J].Journal of Vibration and Shock, 2012,31(8):96-101.
[7]WU Z, HUANG N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[8]刘晓凰, 李春英.基于EEMD分解和改进小波阈值降噪的齿轮故障诊断[J].机械管理开发, 2018(4): 76-78.
LIU Xiaohuang, LI Chunying.Gear fault diagnosis based on EEMD decomposition and improved wavelet threshold denoising[J].Mechanical Management and Development, 2018(4): 76-78.
[9]宁少慧, 韩振南, 武学峰,等.EEMD和TFPF联合降噪法在齿轮故障诊断中的应用[J].振动、测试与诊断, 2017, 37(5):1011-1017.
NING Shaohui, HAN Zhennan, WU Xuefeng, et al.Application of combined TFPF and EEMD denoising method in gear fault diagnosis[J].Journal of Vibration, Measurement & Diagnosis, 2017, 37(5): 1011-1017.
[10]DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J].IEEE Tran on Signal Processing, 2014, 62(3): 531-544.
[11]程军圣, 杨宇.机械故障振动信号的局部均值分解方法[M].长沙: 湖南大学出版社, 2013.
[12]王新,闫文源.基于变分模态分解和SVM的滚动轴承故障诊断[J].振动与冲击, 2017, 36(18): 252-256.
WANG Xin, YAN Wenyuan.Fault diagnosis of roller bearings based on the variational mode decomposition and SVM[J].Journal of Vibration and Shock, 2017, 36(18): 252-256.
[13]姜万录,王浩楠,朱勇,等.变分模态分解消噪和核模糊C均值聚类相结合的滚动轴承故障识别方法[J].中国机械工程,2017,28(10):1215-1220.
JIANG Wanlu, WANG Haonan, ZHU Yong, et al.Integrated VMD denoising KFCM clustering fault identification method of rolling bearings[J].China Mechanical Engineering, 2017, 28(10): 1215-1220.
[14]张梅军, 唐建, 何晓晖.EEMD方法及其在机械故障诊断中的应用[M].北京: 国防工业出版社, 2015.
[15]杨宇, 程军圣.机械故障信号的广义解调时频分析[M].长沙: 湖南大学出版社, 2013.
[16]刘长良, 武英杰, 甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报, 2015, 35(13): 3358-3365.
LIU Changliang, WU Yingjie, ZHEN Chenggang.Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering[J].Proceedings of the CSEE, 2015,35(13): 3358-3365.
[17]张伟, 白恺, 宋鹏, 等.基于VMD和奇异值能量差分谱的风机滚动轴承故障特征提取方法[J].华北电力技术, 2017(3): 59-64.
ZHANG Wei, BAI Kai, SONG Peng, et al.Wind turbine rolling bearing fault extraction method based on VMD and singular value energy difference spectrum[J].North China Electric Power, 2017(3): 59-64.
[18]丁文浩, 赵武云, 张征, 等.变分模态分解方法滤波特性及其在齿轮箱故障检测中的应用[J].机电工程, 2019, 36(8): 783-790.
DING Wenhao, ZHAO Wuyun, ZHANG Zheng, et al.Filter characteristics of variational mode decomposition method and its application in gearbox fault detection[J].Journal of Mechanical & Electrical Engineering,2019,36(8):783-790.
[19]PENG Z K, TSE P W, CHU F L.An improved Hilbert-Huang transform and its application in vibration signal analysis[J].Journal of Shound and Vibration, 2005, 286(1/2): 187-205.
[20]马宏伟, 张大伟, 曹现刚, 等.基于EMD的振动信号去噪方法研究[J].振动与冲击, 2016, 35(22): 38-40.
MA Hongwei, ZHANG Dawei, CAO Xiangang, et al.Vibration signal de-noising method based on empirical mode decomposition[J].Journal of Vibration and Shock, 2016, 35(22): 38-40.
[21]费鸿禄, 刘梦, 曲广建, 等.基于集合经验模态分解-小波阈值方法的爆破振动信号降噪方法[J].爆炸与冲击, 2018, 38(1): 112-118.
FEI Honglu, LIU Meng, QU Guangjian, et al.A method for blasting vibration signal denoising based on ensemble empirical mode decomposition-wavelet threshold[J].Explosion and Shock Waves, 2018, 38(1): 112-118.
[22]赵怀壁, 王林.基于Hilbert解包络及倒频谱分析的齿轮箱断齿故障诊断研究[J].煤矿机械, 2011,32(5):232-234.
ZHAO Huaibi, WANG Lin.Tooth fracture diagnosis in gearbox based on Hilbert envelopment and cepstrum[J].Coal Mine Machinery, 2011, 32(5): 232-234.
[23]张键.机械故障诊断技术[M].北京: 机械工业出版社, 2008.
 

PDF(2381 KB)

Accesses

Citation

Detail

段落导航
相关文章

/