非一致地震激励下大跨度桥梁弹塑性随机响应分析研究

刘小璐1,苏成2,聂铭1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 297-304.

PDF(1772 KB)
PDF(1772 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 297-304.
论文

非一致地震激励下大跨度桥梁弹塑性随机响应分析研究

  • 刘小璐1,苏成2,聂铭1
作者信息 +

Inelastic random response analysis of long-span bridges under non-uniform seismic excitation

  • LIU Xiaolu1, SU Cheng2, NIE Ming1
Author information +
文章历史 +

摘要

大跨度桥梁地震激励具有明显的非一致性和随机性,且在强震作用下大桥部分构件会进入弹塑性状态,然而目前尚缺乏非一致地震激励下大跨度桥梁弹塑性随机响应的有效计算方法。在大质量法的基础上推导了非一致地震激励下大跨度桥梁弹塑性动力响应的时域显式表达式,利用该表达式的降维列式优势,仅需针对结构弹塑性单元自由度进行迭代计算,进而对大跨度桥梁结构快速开展弹塑性时程分析;结合蒙特卡罗法,高效获取非一致地震激励下大跨度桥梁的弹塑性随机响应。以某主跨为1 200 m的悬索桥为工程实例,采用纤维梁柱单元模拟大桥弹塑性构件,开展顺桥向非一致地震激励下的弹塑性时程分析以及弹塑性随机振动分析,验证了该方法的正确性和高效性。研究结果表明,该大桥非一致地震激励下的内力标准差和平均峰值比一致地震激励下的结果既可能偏大也可能偏小。

Abstract

Seismic excitation at different supports of long-span bridges is usually non-uniform and essentially random, and some structural components of bridges will be in inelastic under strong earthquakes.So far, there is no effective method to calculate the inelastic random response of long-span bridges under non-uniform seismic excitation.Based on the large-mass method, the time-domain explicit expression for inelastic dynamic responses was derived for long-span bridges under non-uniform seismic excitation.By use of the time-domain explicit expression, only the degree of freedoms associated with the inelastic elements were involved in iterative calculation, thus inelastic time-history analysis could be conducted efficiently.Combined with the Monte-Carlo simulation, the inelastic random responses of long-span bridges under non-uniform excitation could be obtained efficiently.A suspension bridge with span of 1 200 m was taken as the engineering example, where the inelastic components were simulated by the fiber beam-column element model, and nonlinear random vibration analysis was conducted on the bridge under non-uniform seismic excitation along the bridge to verify the accuracy and efficiency of the present method.The result shows that the standard deviations and mean peak values of the internal forces of the bridge under non-uniform seismic excitations may be larger or smaller than those under uniform seismic excitations.

关键词

大跨度桥梁 / 随机振动 / 非一致地震激励 / 弹塑性 / 降维迭代

Key words

long-span bridge / random vibration / non-uniform seismic excitation / inelastic / dimension-reduced iteration

引用本文

导出引用
刘小璐1,苏成2,聂铭1. 非一致地震激励下大跨度桥梁弹塑性随机响应分析研究[J]. 振动与冲击, 2021, 40(12): 297-304
LIU Xiaolu1, SU Cheng2, NIE Ming1. Inelastic random response analysis of long-span bridges under non-uniform seismic excitation[J]. Journal of Vibration and Shock, 2021, 40(12): 297-304

参考文献

[1]KIUREGHIAN A D, NEUENHOFER A.Response spectrum method for multi-support seismic excitations [J].Earthquake Engineering and Structural Dynamics, 1992, 21: 713-740.
[2]ALLAM S M, DATTA T K.Seismic behaviour of cable-stayed bridges under multi-component random ground motion[J].Engineering Structures, 1999, 21(1): 62-74.
[3]DUMANOGLUID A A, SOYLUK K.A stochastic analysis of long span structures subjected to spatially varying ground motions including the site-response effect [J].Engineering Structures, 2003, 25: 1301-1310.
[4]LIN J H, ZHANG Y H, LI Q S, et al.Seismic spatial effects for long-span bridges, using the pseudo excitation method [J].Engineering Structures, 2004, 26(9): 1207-1216.
[5]焦常科, 李爱群.大跨度斜拉桥多点激励随机地震响应研究[J].振动工程学报, 2013, 26(5): 707-714.
JIAO Changke, LI Aiqun.Research on random seismic response of long-span cable-stayed bridge under multi-excitation [J].Journal of Vibration Engineering, 2013, 26(5):707-714.
[6]赵雷, 刘宁国.大跨度叠合梁斜拉桥多维多点非平稳随机地震响应分析[J].应用数学和力学, 2017, 38(1): 118-125.
ZHAO Lei, LIU Ningguo.Non-stationary random seismic analysis of large-span composite beam cable-stayed bridges under multi-support and multi-dimensional earthquake excitations [J].Applied Mathematics and Mechanics, 2017, 38(1): 118-125.
[7]刘小璐, 苏成, 李保木, 等.非一致地震激励下大跨度桥梁随机振动时域显式法[J].土木工程学报, 2019, 52(3): 50-60.
LIU Xiaolu, SU Cheng, LI Baomu, et al.Random vibration analysis of long-span bridges under non-uniform seismic excitations by explicit time-domain method [J].China Civil Engineering Journal, 2019, 52(3): 50-60.
[8]ZHU W Q.Nonlinear stochastic dynamics and control in hamiltonian formulation [J].Applied Mechanics Reviews,2006, 59: 230-248.
[9]ZENG Y, ZHU W Q.Stochastic averaging of n-dimensional non-linear dynamical systems subject to non-Gaussian wide-band random excitations [J].International Journal of Non-Linear Mechanics, 2010, 45(5): 572-586.
[10]WAUBKE H, KASESS C H.Gaussian closure technique applied to the hysteretic Bouc model with non-zero mean white noise excitation [J].Journal of Sound & Vibration, 2016, 382: 258-273.
[11]ELISHAKOFF I, CRANDALL S H.Sixty years of stochastic linearization technique [J].Meccania,2017,52:299-305.
[12]WANG Z Q, SONG J H.Equivalent linearization method using Gaussian mixture (GM-ELM) for nonlinear random vibration analysis [J].Structural Safety, 2017, 64: 9-19.
[13]ZHU W Q, LEI Y.Equivalent nonlinear system method for stochastically excited and dissipated integrable hamiltonian systems [J].Journal of Sound & Vibration, 2004, 274(3/4/5): 1110-1122.
[14]LI J.Probability density evolution method: Background, significance, and recent developments [J].Probabilistic Engineering Mechanics, 2016, 44: 111-117.
[15]KOUGIOUMTZOGLOU I A, MATTEO A D, SPANOS P D, et al.An efficient Wiener path integral technique formulation for stochastic response determination of nonlinear MDOF systems [J].Journal of Applied Mechanics, 2015, 82(10), 101005: 1-7.
[16]PROPPE C, PRADLWARTER H, SCHUELLER G I.Equivalent linearization and Monte Carlo simulation in stochastic dynamics [J].Probabilistic Engineering Mechanics, 2003, 18(1): 1-15.
[17]COLANGELO F.Interaction of axial force and bending moment by using Bouc-Wen hysteresis and stochastic linearization [J].Structural Safety, 2017, 69: 39-53.
[18]赵岩, 林家浩, 郭杏林.桥梁滞变非线性随机地震响应分析[J].计算力学学报, 2005, 22(2): 145-148.
ZHAO Yan, LIN Jiahao, GUO Xinglin.Seismic random vibration analysis of bridges with hysteretic nonlinearity [J].Chinese Journal of Computational Mechanics, 2005, 22(2): 145-148.
[19]SHINOZUKA M.Monte-Carlo solution of structural dynamics [J].Computers and Structures, 1972, 2(5/6): 855-874.
[20]SU C, LIU X L, LI B M, et al.Inelastic response analysis of bridges subjected to non-stationary seismic excitations by efficient MCS based on explicit time-domain method [J].Nonlinear Dynamics, 2018, 94: 2097-2114.
[21]LEGER P, IDE I M, PAULTRE P.Multiple support seismic analysis of large structures [J].Computers & Structures, 1990, 36(6): 1153-1158.
[22]KARMAKAR D, CHAUDHURI S R, SHINOZUKA M.Finite element model development, validation and probabilistic seismic performance evaluation of Vincent Thomas suspension bridge [J].Structure and Infrastructure Engineering, 2015, 11(2): 223-237.
[23]MENEGOTTO M, PINTO P E.Method of analysis for cyclically loaded RC frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending [R].IABSE Congress Reports of the Working Commission, 1973.
[24]SCOTT B D, PARK R, PRIESTLEY M J N.Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J].ACI journal, 1982, 79(1): 13-27.
[25]CLOUGH R W, PENZIEN J.Dynamic of structure[M].New York: Mcgraw-hill, 1993.
[26]HARICHANDRAN R S, VANMARCKE E H.Stochastic variation of earthquake ground motion in space and time[J].J.Engineering Mechanics,ASCE,1986,112(2):154-175.
[27]广东省地震工程勘测中心.虎门二桥工程场地地震安全性评价报告[R].广州:[出版者不祥],2013.
[28]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报, 2003, 36(5): 5-10.
XUE Suduo, WANG Xuesheng, CAO Zi.Parameters study on seismic random model based on the new seismic code [J].China Civil Engineering Journal, 2003, 36(5): 5-10.

PDF(1772 KB)

481

Accesses

0

Citation

Detail

段落导航
相关文章

/