基于概率论的爆破振动傅里叶主频预测

邓冰杰1,2,3,王林峰1,4,5,李振1,3,李林刚1,4,莫诎4,5

振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 46-54.

PDF(1862 KB)
PDF(1862 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 46-54.
论文

基于概率论的爆破振动傅里叶主频预测

  • 邓冰杰1,2,3,王林峰1,4,5,李振1,3,李林刚1,4,莫诎4,5
作者信息 +

Fourier frequency prediction of blasting vibration based on the probability theory

  • DENG Bingjie1,2,3,WANG Linfeng1,4,5,LI Zhen1,3,LI Lingang1,4,MO Qu4,5
Author information +
文章历史 +

摘要

以傅里叶主频为研究对象,在总结主振频率预测研究现状的基础上,提出了傅里叶主频的基本公式预测模型,并给出了预测模型参数求解方法。指出了以回归系数(R2)作为预测优劣判别标准的不足之处,提出应以残差平方和(residual square sum, RSS)作为预测相对优劣的判别标准。基于现场实测数据,比较了张立国公式、孟海利公式、卢文波等提出的基于球面波理论和柱面波理论的公式、叶红宇公式和作者推荐的基本公式6种预测模型的预测结果,结果表明:提出的基本公式预测的残差平方和(RSS)最小。考虑到爆破振动的随机性,以提出的基本公式预测模型为基础,引入正态分布理论对主振频率预测模型进行了修正。在定义主振频率相对误差(relative error of the main vibration frequency, REMVF)的基础上,得到了傅里叶主频关于爆心距R和单段最大装药量Q的分布模型,采用“3σ准则”验证了分布模型的正确性。根据“小概率事件”的基本思想,建议取双侧置信度为95%,进而可求得爆破参数确定下傅里叶主频可能的取值区间。

Abstract

Taking the Fourier Principal Frequency as the research object, on the basis of summarizing the research status of the prediction of the principal frequency, a basic formula prediction model of the Fourier principal frequency was put forward, and the method of solving the parameters of the prediction model was given.This paper pointed out the deficiency of using the Regression Coefficient (R2)as the criterion for predicting the relative merits and demerits, and put forward that residual square sum(RSS) should be used as the criterion for predicting the relative merits and demerits.Based on the field data, the prediction results of six prediction models, which are Zhang Liguo’s formula, Meng Haili’s formula, and the basic formula proposed by this paper, the formula based on the spherical wave theory and the cylindrical wave theory proposed by Lu Wenbo, and Ye Hongyu formula, were compared.the measured data show that the RSS predicted by the basic formula presented in this paper is the smallest.Considering the randomness of blasting vibration, based on the basic formula prediction model proposed in this paper, the normal distribution theory was introduced to modify the main vibration frequency prediction model.On the basis of defining the relative error of the main frequency (REMVF), the distribution model of Fourier Principal Frequency about the detonation center distance (R) and the single maximum charge quantity (Q) was obtained, and the accuracy of the distribution model was verified by using the “3σ criterion”.According to the basic idea of “small probability event”, the confidence of both sides should be 95% is suggested.Then the possible range of Fourier Principal Frequency can be determined by the blasting parameters.

关键词

爆破振动 / 傅里叶主频 / 主频预测 / 正态分布 / 双侧置信度

Key words

blasting vibration / Fourier principal frequency / principal frequency prediction mode / normal distribution / bilateral confidence level

引用本文

导出引用
邓冰杰1,2,3,王林峰1,4,5,李振1,3,李林刚1,4,莫诎4,5. 基于概率论的爆破振动傅里叶主频预测[J]. 振动与冲击, 2021, 40(12): 46-54
DENG Bingjie1,2,3,WANG Linfeng1,4,5,LI Zhen1,3,LI Lingang1,4,MO Qu4,5. Fourier frequency prediction of blasting vibration based on the probability theory[J]. Journal of Vibration and Shock, 2021, 40(12): 46-54

参考文献

[1]卢文波,周俊汝,陈明,等.爆破振动主频衰减公式研究[J].工程爆破, 2015,21(6): 1-6.
LU Wenbo, ZHOU Junru, CHEN Ming, et al.Study on attenuation formula of dominant frequency of blasting vibration[J].Engineering Blasting, 2015,21(6): 1-6.
[2]KARADOGAN A, KAHRIMAN A, OZER U.A new damage criteria norm for blast-induced ground vibrations in Turkey[J].Arabian Journal of Geosciences, 2014,7(4): 1617-1626.
[3]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.爆破安全规程: GB 6722—2014[S].北京:中国标准出版社, 2014.
[4]易长平,冯林,王刚,等.爆破振动预测研究综述[J].现代矿业, 2011,27(5): 1-5.
YI Changping, FENG Lin, WANG Gang, et al.A review of research on blasting vibration prediction[J].Modern Mining, 2011,27(5): 1-5.
[5]焦永斌.爆破地震安全评定标准初探[J].爆破, 1995(3): 45-47.
JIAO Yongbin.Preliminary study on evaluation criteria of blasting seismic safety[J].Blasting, 1995(3): 45-47.
[6]唐春海,于亚伦,王建宙.爆破地震动安全判据的初步探讨[J].有色金属, 2001(1): 1-4.
TANG Chunhai, YU Yalun, WANG Jianzhou.Elementary study of safety criterion for blastting vibration[J].Nonferrous Metals, 2001(1): 1-4.
[7]张立国,龚敏,于亚伦.爆破振动频率预测及其回归分析[J].辽宁工程技术大学学报, 2005(2): 187-189.
ZHANG Liguo, GONG Min, YU Yalun.Forecast and regression anslysis of blasting vibration frequency[J].Journal of Liaoning Technical University, 2005(2): 187-189.
[8]张立国,于亚伦.爆破振动主振频率与质点速度峰值关系的研究[J].有色金属(矿山部分), 2005(4): 32-34.
ZHANG Liguo, YU Yalun.Study on the relation between the main vibration frequency of blasting vibration and the particle peak velocity[J].Nonferrous Metals(Mining Section), 2005(4): 32-34.
[9]孟海利,郭峰.爆破地震波主频率的试验研究[J].铁道工程学报, 2009,26(11): 81-83.
MENG Haili, GUO Feng.Experimental research on the master frequency of blasting seismic wave[J].Journal of Railway Engineering Society, 2009,26(11): 81-83.
[10]陈博闻.基于量纲分析的爆破振动频率公式[J].水利水电技术, 2012,43(2): 54-57.
CHEN Bowen.Dimensional analysis based formula of blasting vibration frequency[J].Water Resources and Hydropower Engineering, 2012,43(2): 54-57.
[11]卢文波,张乐,周俊汝,等.爆破振动频率衰减机制和衰减规律的理论分析[J].爆破, 2013,30(2): 1-6.
LU Wenbo, ZHANG Le, ZHOU Junru, et al.Theroertical analysis on decay mechanism and law of blasting vibration frequency[J].Blasting, 2013,30(2): 1-6.
[12]周俊汝,卢文波,张乐,等.爆破地震波传播过程的振动频率衰减规律研究[J].岩石力学与工程学报, 2014,33(11): 2171-2178.
ZHOU Junru, LU Wenbo, ZHANG Le, et al.Attenuation of vibration frequency during propagation of blasting seismic ave[J].Chinese Journal of Rock Mechanics and Engineering, 2014,33(11): 2171-2178.
[13]卢文波,周俊汝,陈明,等.爆破振动主频衰减公式研究[J].工程爆破, 2015,21(6): 1-6.
LU Wenbo, ZHOU Junru, CHEN Ming, et al.Study on attenuation formula of dominant frequency of blasting vibration[J].Engineering Blasting, 2015,21(6): 1-6.
[14]刘达,卢文波,陈明,等.隧洞钻爆开挖爆破振动主频衰减公式研究[J].岩石力学与工程学报, 2018,37(9): 2015-2026.
LIU Da, LU Wenbo, CHEN Ming, et al.Attenuation formula of the dominant frequency of blasting vibration during tunnel excavation[J].Chinese Journal of Rock Mechanics and Engineering, 2018,37(9): 2015-2026.
[15]叶红宇,杨小林,卓越.基于损伤累积的爆破振动主频衰减规律试验研究[J].矿业研究与开发, 2019,39(4): 92-96.
YE Hongyu, YANG Xiaolin, ZHUO Yue.Experimental study on the attenuation law of main frequency in blasting vibration based on damage accumulation[J].Mining Research and Development, 2019,39(4): 92-96.
[16]周俊汝,卢文波,钟冬望,等.竖向钻孔爆破激发振动波频率的衰减特征[J].爆破, 2019,36(1): 14-20.
ZHOU Junru, LU Wenbo, ZHONG Dongwang, et al.Attenuation Characteristics of vibration frequency induced by vertical borehole blasting[J].Blasting, 2019,36(1): 14-20.
[17]张艺峰,姚道平,谢志招.基于BP神经网络的爆破振动峰值及主频预测[J].工程地球物理学报, 2008(2): 222-226.
ZHANG Yifeng, YAO Daoping, XIE Zhizhao.The prediction of blasting vibration peak value & main frequency by BP neural network[J].Chinese Journal of Engineering Geophysics, 2008(2): 222-226.
[18]周玉纯,吴立,袁青,等.基于粗糙集模糊神经网络的爆破振动预测[J].爆破, 2016,33(3): 127-131.
ZHOU Yuchun, WU Li, YUAN Qing, et al.Blasting vibration prediction based on rough set-Fuzzy neural network method[J].Blasting, 2016,33(3): 127-131.
[19]SINGH K V.Prediction of blast induced ground vibration and frequency using an artificial intelligent technique[J].Noise & Vibration Worldwide, 2004,35(11): 7-15.
[20]KHANDELWAL M, SINGH T N.Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach[J].Journal of Sound and Vibration, 2006,289(4/5): 711-725.
[21]LVAREZ VIGIL A E, GONZLEZ NICIEZA C, LPEZ GAYARRE F, et al.Predicting blasting propagation velocity and vibration frequency using artificial neural networks[J].International Journal of Rock Mechanics and Mining Sciences, 2012,55: 108-116.
[22]LI Haibo, LI Xiaofeng, LI Jianchun, et al.Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency[J].Earthq.Eng.& Eng.Vib., 2016,15: 153-162.
[23]BLAIR D P.Non-linear superposition models of blast vibration[J].International Journal of Rock Mechanics and Mining Sciences, 2008,45(2): 235-247.
[24]杨年华,张乐.爆破振动波叠加数值预测方法[J].爆炸与冲击, 2012,32(1): 84-90.
YANG Nianhua, ZHANG Le.Blasting vibration waveform prediction method based on superposition principle[J].Explosion and Shock Waves, 2012,32(1): 84-90.
[25]雷振.台阶爆破振动效应非线性预测方法研究及应用[D].北京:中国矿业大学,2015.
[26]杨年华.基于经验格林函数方法的爆破振动预测[J].工程爆破, 2016,22(5): 32-36.
YANG Nianhua.Prediction of blasting vibration based on empirical Green’s function method[J].Engineering Blasting, 2016,22(5): 32-36.
[27]雷振,高正华,左宇军,等.基于B样条的爆破振动“速度-频率”历程预测方法[J].矿业研究与开发, 2018,38(6): 6-10.
LEI Zhen, GAO Zhenghua, ZUO Yujun, et al.Prediction method of velocity and frequency process for blasting vibration based on B-spline[J].Mining Research and Development, 2018,38(6): 6-10.
[28]刘小鸣, 陈士海.群孔微差爆破的地表振动波形预测及其效应分析[J].岩土工程学报, 2019,42(3): 551-560.
LIU Xiaoming, CHEN Shihai.Prediction and effect analysis of surface vibration waveform for group hole delay blasting[J].Chinese Journal of Geotechnical Engineering, 2019,42(3): 551-560.
[29]吕涛, 石永强, 黄诚,等.非线性回归法求解爆破振动速度衰减公式参数[J].岩土力学, 2007,28(9): 1871-1878.
L Tao, SHI Yongqiang, HUANG Cheng, et al.Study on attenuation parameters of blasting vibration by nonlinear regression analysis[J].Rock and Soil Mechanics, 2007,28(9): 1871 -1878.
[30]盛骤,谢式千,潘承毅.概率论与数理统计 [M].4版.北京:高等教育出版社,2008.

PDF(1862 KB)

Accesses

Citation

Detail

段落导航
相关文章

/