[1]祝燮权.实用滚动轴承手册[M].上海:上海科学技术出版社, 2002.
[2]肖述兵.滚动轴承振动故障诊断实践[J].轴承, 2006(3): 31-33.
XIAO Shubing.Fault diagnosis of rolling bearing vibration[J].Bearing, 2006(3): 31-33.
[3]王国彪, 何正嘉, 陈雪峰, 等.机械故障诊断基础研究“何去何从”[J].机械工程学报, 2013,49(1): 63-72.
WANG Guobiao, HE Zhengjia, CHEN Xuefeng, et al.Basic research on machinery fault diagnosis—what is the prescription[J].Journal of Mechanical Engineering, 2013,49(1): 63-72.
[4]钟秉林, 黄仁.机械故障诊断学[M].北京:机械工业出版社, 2007.
[5]XIONG Xin, YANG Shixi, GAN Chunbiao.A new procedure for extracting fault feature of multi-frequency signal from rotating machinery[J].Mechanical Systems and Signal Processing, 2012,32: 306-319.
[6]JIN Xiaohang, SUN Yi, SHAN Jihong, et al.Fault diagnosis and prognosis for wind turbines: An overview[J].Chinese Journal of Scientific Instrument, 2017,38(5): 1041-1054.
[7]RANDALL R B, ANTONI J.Rolling element bearing diagnostics—A tutorial[J].Mechanical Systems and Signal Processing, 2011,25(2): 485-520.
[8]GUO Lili, DING Shifei.Research progress on deep learning[J].Computer Science, 2015,42(5): 28-33.
[9]DIAO Wenhui, SUN Xian, ZHENG Xinwei, et al.Efficient saliency-based object detection in remote sensing images using deep belief networks[J].IEEE Geoscience and Remote Sensing Letters, 2016,13(2): 137-141.
[10]ZENG Nianyin, ZHANG Hong, SONG Baoye, et al.Facial expression recognition via learning deep sparse autoencoders[J].Neurocomputing, 2018,273: 643-649.
[11]LECUN Y, BENGIO Y, HINTON G.Deep learning[J].Nature, 2015,521(7553): 436-444.
[12]FUKUSHIMA K.Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J].Biological Cybernetics, 1980,36(4): 193-202.
[13]LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998,86(11): 2278-2324.
[14]KRIZHEVSKY A, SUTSKEVER I, HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems, 2012.
[15]HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
[16]HAN Tao, YUAN Jianhu, TANG Jian, et al.An approach of intelligent compound fault diagnosis of rolling bearing based on MWT and CNN[J].Journal of Mechanical Transmission, 2016(12): 31.
[17]LI Xiaolei, DING Pengli, SHI Xiaobing.Research on bearing fault detection based on convolution neural network[C]//2017 Chinese Automation Congress (CAC).IEEE, 2017.
[18]JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al.Convolutional neural network based fault detection for rotating machinery[J].Journal of Sound and Vibration, 2016,377: 331-345.
[19]WANG Tianyang, HAN Qinkai, CHU Fulei, et al.Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review[J].Mechanical Systems and Signal Processing, 2019,126: 662-685.
[20]张青青.基于改进AlexNet的滚动轴承变工况故障诊断研究[D].兰州:兰州理工大学, 2019.
[21]胡晓依, 荆云建, 宋志坤, 等.基于CNN-SVM的深度卷积神经网络轴承故障识别研究[J].振动与冲击, 2019,38(18): 173-178.
HU Xiaoyi, JING Yunjian, SONG Zhikun, et al.Bearing fault identification by using deep convolution neural networks based on CNN-SVM[J].Journal of Vibration and Shock, 2019,38(18): 173-178.
[22]BOUVRIE J.Notes on convolutional neural networks[R].USA: MIT, 2006.
[23]IOFFE S, SZEGEDY C.Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// International Conference on International Conference on Machine Learning.JMLR.org, 2015.
[24]MAATEN L, HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research, 2008,9: 2579-2605.
[25]ALI J B, FNAIECH N, SAIDI L, et al.Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J].Applied Acoustics, 2015,89: 16-27.
[26]HE Jun, YANG Shixi, GAN Chunbiao.Unsupervised fault diagnosis of a gear transmission chain using a deep belief network[J].Sensors, 2017,17(7): 1564.