轴力和水压作用下深水输液管道湿模态振动特性分析

余建星1,2,李振眠1,2,余杨1,2,赵明仁1,2,崔宇朋1,2,赵宇1,2,徐立新1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 90-96.

PDF(1139 KB)
PDF(1139 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (12) : 90-96.
论文

轴力和水压作用下深水输液管道湿模态振动特性分析

  • 余建星1,2,李振眠1,2,余杨1,2,赵明仁1,2,崔宇朋1,2,赵宇1,2,徐立新1,2
作者信息 +

Wet modal vibration analysis for submarine fluid-conveying pipeline under axial tension and hydrostatic pressure

  • YU Jianxing1,2,LI Zhenmian1,2,YU Yang1,2,ZHAO Mingren1,2,CUI Yupeng1,2,ZHAO Yu1,2,XU Lixin1,2
Author information +
文章历史 +

摘要

采用Love-Timoshenko理论和Helmholtz方程建立了轴力和水压作用下原油-管道-海水耦合模型,计算得到了深水输液管道壳振动周向模态的固有频率。通过文献对比,验证了该计算结果的准确性。通过不同工况管道固有频率对比,发现湿模态分析具有不可替代性,原油、海水的存在会降低管道壳振动固有频率,但不会影响管道弹性失稳的临界压力,原油恒定流速的影响可以忽略不计。通过耦合模型参数影响分析,发现边界条件和长径比对高周向模态频率影响较小,而对低周向模态频率影响较大,特别是基频。轴向拉力会小幅降低管道固有频率,进而小幅降低管道弹性失稳临界压力。水压会大幅降低管道固有频率,甚至引发结构失稳。因此,在深水输液管道湿模态周向振动特性分析中轴力和水压作用应加以重视。

Abstract

A coupled model of submarine pipeline conveying crude oil under axial tension and hydrostatic pressure was established based on the Love-Timoshenko theory and the Helmholtz equation and results of structural natural frequencies were obtained.Compared with those in literature, the results presented were confirmed to be correct.By comparing the natural frequencies under different working conditions, it was found that wet mode analysis is irreplaceable for submarine pipeline vibration analysis.The presence of crude oil and sea water will reduce the natural frequencies, but will not affect the elastic critical pressure.The influence of crude oil constant flow velocity can be ignored.Though parameters analysis, it is found that the boundary conditions and the length-radius ratio have less influence on high circumferential mode frequencies, but greater influence on low ones, especially the fundamental frequency.The axial tension will slightly reduce the natural frequency, and then slightly reduce the elastic critical pressure.Hydrostatic pressure can greatly reduce the natural frequency and even cause structural instability.Therefore, the axial force and hydrostatic pressure should be addressed in the wet mode analysis of submarine pipeline.

关键词

深水管道 / 声固耦合 / 湿模态分析 / 固有频率 / 初始应力

Key words

submarine pipeline / acoustic-structure coupling / wet mode analysis / natural frequency / initial stress

引用本文

导出引用
余建星1,2,李振眠1,2,余杨1,2,赵明仁1,2,崔宇朋1,2,赵宇1,2,徐立新1,2. 轴力和水压作用下深水输液管道湿模态振动特性分析[J]. 振动与冲击, 2021, 40(12): 90-96
YU Jianxing1,2,LI Zhenmian1,2,YU Yang1,2,ZHAO Mingren1,2,CUI Yupeng1,2,ZHAO Yu1,2,XU Lixin1,2. Wet modal vibration analysis for submarine fluid-conveying pipeline under axial tension and hydrostatic pressure[J]. Journal of Vibration and Shock, 2021, 40(12): 90-96

参考文献

[1]杨超, 范士娟.输液管道流固耦合振动的数值分析[J].振动与冲击, 2009,28(6): 56-59.
YANG Chao, FAN Shijuan.Numerical analysis of fluid-structure coupled vibration of fluid-conveying pipe[J].Journal of Vibration and Shock, 2009,28(6): 56-59.
[2]ZHU Z L, LIANG Z, HU Y.Buckling behavior and axial load transfer assessment of coiled tubing with initial curvature in an inclined well[J].Journal of Petroleum Science and Engineering, 2019,173: 136-145.
[3]YU Jianxing, HAN Mengxue, DUAN Jinghui, et al.The research on the different loading paths of pipes under combined external pressure and axial tension[J].International Journal of Mechanical Sciences, 2019,160: 219-228.
[4]KYRIAKIDES S, CHANG Y C.On the effect of axial tension on the propagation pressure of long cylindrical shells [J].International Journal of Mechanical Sciences, 1992,34(1): 3-15.
[5]KRISTOFFERSEN M, LANGSETH M, BORVIK T.Combined three-point bending and axial tension of pressurised and unpressurised X65 offshore steel pipes-Experiments and simulations[J].Marine Structures, 2018,61: 560-577.
[6]TIJSSELING A S.Fluid-structure interaction in liquid-filled pipe systems: a review[J].Journal of Fluids & Structures, 1996,10(2): 109-146.
[7]ASHELEY H, HAVILAND G.Bending vibrations of a pipeline containing flowing fluid[J].Journal of Applied Mechanic, 1950(17): 229-232.
[8]DAI H L, WANG L, QIAN Q J.Vibration analysis of three-dimensional pipes conveying fluid with consideration of steady combined force by transfer matrix method[J].Applied Mathematics and Computation, 2012,219(5): 2453-2464.
[9]ZHANG X M.Parametric studies of coupled vibration of cylindrical pipes conveying fluid with the wave propagation approach[J].Computers & Structures, 2002,80(3/4): 287-295.
[10]LIU J X, LI T Y, LIU T G, et al.Vibration characteristic analysis of buried pipes using the wave propagation approach[J].Acta Mechanica Solida Sinica, 2005,66(3): 353-364.
[11]HUANG Yimin, LIU Yongshou.Natural frequency analysis of fluid conveying pipeline with different boundary conditions[J].Nuclear Engineering and Design, 2010,240(3): 461-467.
[12]ZHU Hongzhen, WANG Weibo, YIN Xuewen, et al.Spectral element method for vibration analysis of three-dimensional pipes conveying fluid[J].International Journal of Mechanics and Materials in Design, 2019,15(2): 345-360.
[13]姜峰,郑运虎,梁瑞,等.海洋立管湿模态振动分析[J].西南石油大学学报(自然科学版), 2015,37(5): 159-166.
JIANG Feng, ZHENG Yunhu, LIANG Rui, et al.An analysis of the wet modal vibration of marine riser[J].Journal of Southwest Petroleum University: Science & Technology Edition, 2015,37(5): 159-166.
[14]赵江, 俞建峰, 楼琦.基于流固耦合的T型管振动特性分析[J].振动与冲击, 2019,38(22): 117-123.
ZHAO Jiang, YU Jianfeng LOU Qi.Modal analysis of T-shaped pipes based on a fluid-solid interaction modal[J].Journal of Vibration and Shock, 2019,38(22): 117-123.
[15]赵保磊,余建星,孙震洲,等.深水管道在动力载荷作用下的局部压溃特性研究[J].振动与冲击, 2017,36(17): 104-110.
ZHAO Baolei, YU Jianxing, SUN Zhenzhou, et al.Local pressure collapse characteristics of a deep water pipeline under dynamic loading[J].Journal of Vibration and Shock, 2017,36(17): 104-110.
[16]JUNGER M C.Vibrations of elastic shells in a fluid medium and the associated radiation of sound[J].Journal of Applied Mechanics, 1952,19: 439-445.
[17]FULLER C R.Free field coorection factor for spherical acoustic waves impinging on cylinders[J].American Institute of Aeronautics and Astronautics Journal, 1989,27(12): 1722-1726.
[18]ZHANG X M, LIU G R, LAM K Y.Vibration analysis of thin cylindrical shells using wave propagation approach[J].Journal of Sound and Vibration, 2001,239(3): 397-403.
[19]王鹏,李天匀,朱翔,等.近水面状态有限长圆柱壳振动特性分析[J].振动工程学报, 2016,29(5): 772-778.
WANG Peng, LI Tianyun, ZHU Xiang, et al.Frequency analysis of submerged cylindrical shell near the free surface[J].Journal of Vibration Engineering, 2016,29(5): 772-778.
[20]LIU Z Z, LI T Y, ZHU X, et al.The effect of hydrostatic pressure fields on the dispersion characteristics of fluid-shell coupled system[J].Journal of Marine Science and Application, 2010,9(2): 129-136.
[21]ZHU X, YE W B, LI T Y, et al.The elastic critical pressure prediction of submerged cylindrical shell using wave propagation method[J].Ocean Engineering, 2013,58: 22-26.
[22]ERGN R, ERCENGIZ A.Propagation of harmonic waves in prestressed fiber viscoelastic thick tubes filled with a viscous dusty fluid[J].Applied Mathematical Modelling, 2010,34(9): 2597-2614.
[23]TIMOSHENKO S.Theory of plates and shells[M].McGraw-Hill, 1959.
[24]徐慕冰, 张小铭.管内流速对充液壳输入能量流的影响[J].声学学报, 1998(6): 509-514.
XU Mubing, ZHANG Xiaoming.Effect of an internal flow on the input power flow of a fluid-filled shell[J].Acta Acustica, 1998(6): 509-514.
[25]龙爱芳,胡军浩.一类解非线性方程的不需要计算导数的新方法[J].哈尔滨工业大学学报, 2009,41(1): 226-228.
LONG Aifang, HU Junhao.A new method for solving nonlinear equation without dericative calculation[J].Journal of Harbin Institute of Technology, 2009,41(1): 226-228.
[26]ZHANG X M, LIU G R, LAM K Y.Coupled vibration analysis of fluid-filled cylindrical shells using the wave propagation approach[J].Applied Acoustics, 2001,62(3): 229-243.
[27]ZHANG X M.Frequency analysis of submerged cylindrical shells with the wave propagation approach[J].International Journal of Mechanical Sciences, 2002,44(7): 1259-1273.
[28]张冠军.椭圆及偏心柱壳振动与声辐射特性研究[D].武汉:华中科技大学, 2016.
[29]曹志远.板壳振动理论[M].北京:中国铁道出版社,1989.
[30]LI T Y, XIONG L, ZHU X, et al.The prediction of the elastic critical load of submerged elliptical cylindrical shell based on the vibro-acoustic model[J].Thin-Walled Structures, 2014,84: 255-262.

PDF(1139 KB)

Accesses

Citation

Detail

段落导航
相关文章

/