扭转作用下高阻尼橡胶支座力学性能试验研究

葛庆子1,2,杨毅坚2,戴靠山2,吴体1,熊峰2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 104-110.

PDF(1757 KB)
PDF(1757 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 104-110.
论文

扭转作用下高阻尼橡胶支座力学性能试验研究

  • 葛庆子1,2,杨毅坚2,戴靠山2,吴体1,熊峰2
作者信息 +

Tests for mechanical performance of high damping rubber bearing under torsion

  • GE Qingzi1,2, YANG Yijian2, DAI Kaoshan2, WU Ti1, XIONG Feng2
Author information +
文章历史 +

摘要

在隔震建筑向高烈度区、大体量、高层、复杂体型发展的趋势下,隔震支座会出现拉力、压力、弯矩、剪力、扭矩同时发生的复杂受力情况,困扰工程安全及技术推广。针对以上问题,设计了一套扭转加载试验方案,主要对典型尺寸的原型高阻尼橡胶支座(HDRB600)进行了扭转作用下的静力试验研究,得到了试件的力学性能;同时,采用三维散斑测量分析系统对试件的表面应变进行非接触测量。结果表明:竖向力对支座水平剪切性能、扭转性能影响较为明显;绕Z轴扭转滞回曲线呈方形,饱满有规律,加载至扭转角度8.4°未见明显的承载力下降和破坏现象;绕X轴扭转滞回曲线呈平行四边形,较为饱满,规律性强;绕X轴和绕Z轴扭转均会影响支座的水平性能,导致支座水平性能降低。三维散斑测量结果表明:表面橡胶应变云图分布不均匀,呈现出中部大,上下端部小的特点,间接判断其内部橡胶层的受力情况与传统理论有所不同。

Abstract

With the development trend of isolated buildings to high intensity area, large volume, high-rise and complex shape, isolation bearing can have the complicated load-bearing problem of tensile force, pressure, bending moment, shear force and torque simultaneously occurring, it puzzles the engineering safety and technology promotion. Here, aiming at this problem, a set of torsion loading test schemes was designed, static tests were conducted on the original high damping rubber bearing (HDRB600) with typical size under torsion to obtain the specimen’s mechanical performance. At the same time, non-contact measurement of the specimen’s surface strain was performed using the 3D speckle measurement and analysis system. The results showed that effects of vertical force on horizontal shear performance and torsional performance of the bearing are more obvious; the torsional hysteretic curve about z-axis is square, full and regular, and there is no obvious load-bearing capacity decline and failure phenomenon when loading to the torsion angle of 8.4°; the torsional hysteretic curve about x-axis is parallelogram, fuller and regular; torsions about x-axis and z-axis can affect horizontal performance of the bearing to reduce its horizontal performance. The results of 3D speckle measurement showed that the distribution of the surface rubber strain cloud-graph is uneven, it has features of large in middle and small in upper and lower ends, so there is an indirect judgment of the inner rubber layer stress distribution being different from what the traditional theory describing.

关键词

隔震技术 / 高阻尼橡胶支座 / 扭转试验 / 静力响应 / 非接触测量

Key words

seismic isolation technology / high damping rubber bearing / torsion test / static response / noncontact measurement

引用本文

导出引用
葛庆子1,2,杨毅坚2,戴靠山2,吴体1,熊峰2. 扭转作用下高阻尼橡胶支座力学性能试验研究[J]. 振动与冲击, 2021, 40(13): 104-110
GE Qingzi1,2, YANG Yijian2, DAI Kaoshan2, WU Ti1, XIONG Feng2. Tests for mechanical performance of high damping rubber bearing under torsion[J]. Journal of Vibration and Shock, 2021, 40(13): 104-110

参考文献

[1]李飞燕,吴应雄. 带抗风支座的组合隔震体系隔震层布置优化及试验分析[J]. 振动与冲击, 2019, 38(19): 161-167.
LI Feiyan, WU Yingxiong. Optimization and tests of isolation layer arrangement for a combined isolation system with anti-wind supports [J]. Journal of Vibration and Shock, 2019, 38(19): 161-167.
[2]陈瑞生,吴进标,刘彦辉,等. 黏滞阻尼器-基础隔震混合体系优化研究[J]. 振动与冲击, 2020, 39(11): 93-100.
CHEN Ruisheng, WU Jinbiao, LIU Yanhui, et al. Optimization research for base-isolated structures with fluid viscous dampers [J]. Journal of Vibration and Shock, 2020, 39(11): 93-100.
[3]吴应雄,王兆樑,祁皑,等. 叠层橡胶支座与抗风支座组合隔震反应分析[J]. 振动与冲击, 2014, 33(5): 149-154.
WU Yingxiong, WANG Zhaoliang, QI Ai, et al. Response analysis for a compound isolation structure consisting of laminated rubber bearings and wind-resistant supports [J]. Journal of Vibration and Shock, 2014, 33(5): 149-154.
[4]吴应雄,陆剑峰,颜学渊,等. 不同缩进比例的大底盘单塔楼结构隔震性能研究[J]. 振动与冲击, 2017, 36(23): 123-130.
WU Yingxiong, LU Jianfeng, YAN Xueyuan, et al. Seismic isolation performance of a single tower structure on a large chassis with different indentation ratios [J]. Journal of Vibration and Shock, 2017, 36(23): 123-130.
[5]戴靠山,罗翔,吕洋,等. 带连廊的相邻建筑基础隔震改造碰撞危险性分析[J]. 工程科学与技术, 2019, 51(5): 9-16.
DAI Kaoshan, LUO Xiang, L Yang, et al. Collision risk analysis of base-isolation retrofitted adjacent buildings connected by a corridor bridge [J]. Advanced Engineering Sciences, 2019, 51(5): 9-16.
[6]TSAI C S, CHIANG T, CHEN B, et al. An advanced analytical model for high damping rubber bearings[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(9): 1373-1387.
[7]YOSHIDA J, ABE M, FUJINO Y. Constitutive model of high-damping rubber materials[J]. Journal of Engineering Mechanics, 2004, 130(2): 129-141.
[8]YOSHIDA J, ABE M, FUJINO Y. Three-dimensional finite-element analysis of high damping rubber bearings[J]. Journal of Engineering Mechanics, 2004, 130(5): 607-620.
[9]BHUIYAN A R, OKUI Y, MITAMURA H, et al. A rheology model of high damping rubber bearings for seismic analysis: identification of nonlinear viscosity[J]. International Journal of Solids and Structures, 2009, 46(7/8): 1778-1792.
[10]NGUYEN D A, DANG J, OKUI Y, et al. An improved rheology model for the description of the rate-dependent cyclic behavior of high damping rubber bearings[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 416-431.
[11]陈彦江,郭凯敏,李勇,等. 桥梁高阻尼隔震橡胶支座性能试验研究[J]. 振动与冲击, 2015, 34(9): 136-140.
CHEN Yanjiang, GUO Kaimin, LI Yong, et al. Behavior of high damping seismic isolation rubber bearings for bridges [J]. Journal of Vibration and Shock, 2015, 34(9): 136-140.
[12]WEI W, TAN P, YUAN Y, et al. Experimental and analytical investigation of the influence of compressive load on rate-dependent high-damping rubber bearings[J]. Construction and Building Materials, 2019, 200: 26-35.
[13]魏威. 高阻尼橡胶隔震支座速度相关性力学模型的理论与试验研究[D]. 武汉:华中科技大学, 2017.
[14]MASARU K, MASASHI Y, KEN I, et al. Horizontal bidirectional hysteresis properties of low-modulus high-damping rubber bearings[J]. J Struct Constr Eng, AIJ No.696,2014,79:257-265.
[15]YAMAMOTO M, MINEWAKI S, YONEDA H, et al. Nonlinear behavior of high-damping rubber bearings under horizontal bidirectional loading: full-scale tests and analytical modeling[J]. Earthquake Engineering & Structural Dynamics. 2012, 41(13): 1845-1860.
[16]KATO H, MORI T, MUROTA N. Analytical model for elastoplastic and creep-like behavior of high-damping rubber bearings[J]. Journal of Structural Engineering, 2015, 141(9): 4014211-4014213.
[17]YUAN Y, WEI W, TAN P, et al. A rate-dependent constitutive model of high damping rubber bearings: modeling and experimental verification[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(11): 1875-1892.
[18]OLIVETO N D, MARKOU A A, ATHANASIOU A. Modeling of high damping rubber bearings under bidirectional shear loading[J]. Soil Dynamics and Earthquake Engineering, 2019, 118: 179-190.
[19]CHEN M C, RESTREPO J I, BENZONI G. Response of a high damping rubber bearing to multiaxial excitation[J]. Journal of Testing and Evaluation, 2019, 49(2):1-17.

PDF(1757 KB)

Accesses

Citation

Detail

段落导航
相关文章

/