[1]李飞燕,吴应雄. 带抗风支座的组合隔震体系隔震层布置优化及试验分析[J]. 振动与冲击, 2019, 38(19): 161-167.
LI Feiyan, WU Yingxiong. Optimization and tests of isolation layer arrangement for a combined isolation system with anti-wind supports [J]. Journal of Vibration and Shock, 2019, 38(19): 161-167.
[2]陈瑞生,吴进标,刘彦辉,等. 黏滞阻尼器-基础隔震混合体系优化研究[J]. 振动与冲击, 2020, 39(11): 93-100.
CHEN Ruisheng, WU Jinbiao, LIU Yanhui, et al. Optimization research for base-isolated structures with fluid viscous dampers [J]. Journal of Vibration and Shock, 2020, 39(11): 93-100.
[3]吴应雄,王兆樑,祁皑,等. 叠层橡胶支座与抗风支座组合隔震反应分析[J]. 振动与冲击, 2014, 33(5): 149-154.
WU Yingxiong, WANG Zhaoliang, QI Ai, et al. Response analysis for a compound isolation structure consisting of laminated rubber bearings and wind-resistant supports [J]. Journal of Vibration and Shock, 2014, 33(5): 149-154.
[4]吴应雄,陆剑峰,颜学渊,等. 不同缩进比例的大底盘单塔楼结构隔震性能研究[J]. 振动与冲击, 2017, 36(23): 123-130.
WU Yingxiong, LU Jianfeng, YAN Xueyuan, et al. Seismic isolation performance of a single tower structure on a large chassis with different indentation ratios [J]. Journal of Vibration and Shock, 2017, 36(23): 123-130.
[5]戴靠山,罗翔,吕洋,等. 带连廊的相邻建筑基础隔震改造碰撞危险性分析[J]. 工程科学与技术, 2019, 51(5): 9-16.
DAI Kaoshan, LUO Xiang, L Yang, et al. Collision risk analysis of base-isolation retrofitted adjacent buildings connected by a corridor bridge [J]. Advanced Engineering Sciences, 2019, 51(5): 9-16.
[6]TSAI C S, CHIANG T, CHEN B, et al. An advanced analytical model for high damping rubber bearings[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(9): 1373-1387.
[7]YOSHIDA J, ABE M, FUJINO Y. Constitutive model of high-damping rubber materials[J]. Journal of Engineering Mechanics, 2004, 130(2): 129-141.
[8]YOSHIDA J, ABE M, FUJINO Y. Three-dimensional finite-element analysis of high damping rubber bearings[J]. Journal of Engineering Mechanics, 2004, 130(5): 607-620.
[9]BHUIYAN A R, OKUI Y, MITAMURA H, et al. A rheology model of high damping rubber bearings for seismic analysis: identification of nonlinear viscosity[J]. International Journal of Solids and Structures, 2009, 46(7/8): 1778-1792.
[10]NGUYEN D A, DANG J, OKUI Y, et al. An improved rheology model for the description of the rate-dependent cyclic behavior of high damping rubber bearings[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 416-431.
[11]陈彦江,郭凯敏,李勇,等. 桥梁高阻尼隔震橡胶支座性能试验研究[J]. 振动与冲击, 2015, 34(9): 136-140.
CHEN Yanjiang, GUO Kaimin, LI Yong, et al. Behavior of high damping seismic isolation rubber bearings for bridges [J]. Journal of Vibration and Shock, 2015, 34(9): 136-140.
[12]WEI W, TAN P, YUAN Y, et al. Experimental and analytical investigation of the influence of compressive load on rate-dependent high-damping rubber bearings[J]. Construction and Building Materials, 2019, 200: 26-35.
[13]魏威. 高阻尼橡胶隔震支座速度相关性力学模型的理论与试验研究[D]. 武汉:华中科技大学, 2017.
[14]MASARU K, MASASHI Y, KEN I, et al. Horizontal bidirectional hysteresis properties of low-modulus high-damping rubber bearings[J]. J Struct Constr Eng, AIJ No.696,2014,79:257-265.
[15]YAMAMOTO M, MINEWAKI S, YONEDA H, et al. Nonlinear behavior of high-damping rubber bearings under horizontal bidirectional loading: full-scale tests and analytical modeling[J]. Earthquake Engineering & Structural Dynamics. 2012, 41(13): 1845-1860.
[16]KATO H, MORI T, MUROTA N. Analytical model for elastoplastic and creep-like behavior of high-damping rubber bearings[J]. Journal of Structural Engineering, 2015, 141(9): 4014211-4014213.
[17]YUAN Y, WEI W, TAN P, et al. A rate-dependent constitutive model of high damping rubber bearings: modeling and experimental verification[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(11): 1875-1892.
[18]OLIVETO N D, MARKOU A A, ATHANASIOU A. Modeling of high damping rubber bearings under bidirectional shear loading[J]. Soil Dynamics and Earthquake Engineering, 2019, 118: 179-190.
[19]CHEN M C, RESTREPO J I, BENZONI G. Response of a high damping rubber bearing to multiaxial excitation[J]. Journal of Testing and Evaluation, 2019, 49(2):1-17.