压力伺服阀前置级间液动力振荡和强迫振动的数值研究

康健1,袁朝辉1,王江涛2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 120-128.

PDF(2300 KB)
PDF(2300 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 120-128.
论文

压力伺服阀前置级间液动力振荡和强迫振动的数值研究

  • 康健1,袁朝辉1,王江涛2
作者信息 +

Numerical study on hydrodynamic oscillation and forced vibration in front stage of pressure servo valve

  • KANG Jian1, YUAN Zhaohui1, WANG Jiangtao2
Author information +
文章历史 +

摘要

电液压力伺服阀是飞机制动控制系统中至关重要的控制元件,输出压力的稳定性将直接影响飞机的稳定着陆。衔铁-偏转板组件受到流体不稳定液动力的作用,容易产生强迫振动和高频噪声。在高周交变液动力的作用下,衔铁组件中弹簧管的刚度将逐渐降低,严重影响伺服阀的动态性能。为了寻找衔铁-偏转板组件强迫振动产生的根源,建立了前置级流固耦合三维模型,根据涡流和气穴形态的演变规律,对不同偏转位移情况下的液动力脉动的幅值和频率进行数值分析。分析在高频周期性外载作用下,衔铁-偏转板组件的结构响应特性。最终得出结论:由涡流和气穴的周期性变化导致衔铁-偏转板组件产生高频率液动力振动,前置级非对称的结构和液动力脉动是衔铁-偏转板组件强迫振动的必要条件。

Abstract

Electro-hydraulic pressure servo valve is an important control element in aircraft braking control system. The stability of its output pressure can directly affect stable landing of aircraft. Its armature-deflector assembly is subject to unsteady hydrodynamic force, it is easy to cause forced vibration and high frequency noise. Under the action of high-cycle alternating hydrodynamic force, the stiffness of spring tube in the assembly can gradually drop to seriously affect dynamic performance of the servo valve. Here, in order to find out the source of forced vibration of the armature-deflector assembly, a 3D fluid-structure coupled model of the front stage was established. According to the evolution law of vortex and cavitation morphology, amplitude and frequency of hydrodynamic pulsation under different deflection displacements were numerically analyzed. Structural response characteristics of the armature-deflector assembly under high frequency periodic external load were analyzed. Finally, it was concluded that periodic changes of vortex and cavitation cause the armature-deflector assembly to produce high frequency hydrodynamic vibration; the asymmetric structure of front stage and hydrodynamic pulsation are necessary conditions to cause forced vibration of the armature-deflector assembly.

关键词

衔铁-偏转板组件 / 流固耦合 / 液动力脉动 / 强迫振动

Key words

armature-deflector assembly / fluid-solid coupling / hydrodynamic oscillation / forced vibration

引用本文

导出引用
康健1,袁朝辉1,王江涛2. 压力伺服阀前置级间液动力振荡和强迫振动的数值研究[J]. 振动与冲击, 2021, 40(13): 120-128
KANG Jian1, YUAN Zhaohui1, WANG Jiangtao2. Numerical study on hydrodynamic oscillation and forced vibration in front stage of pressure servo valve[J]. Journal of Vibration and Shock, 2021, 40(13): 120-128

参考文献

[1]康硕, 延皓, 李长春. 偏转射流式伺服阀研究综述[J]. 北京交通大学学报, 2017,41(1):130-139.
KANG Shuo, YAN Hao, LI Changchun. Research review of the deflector jet servo valve[J]. Journal of Beijing Jiaotong University, 2017, 41(1):130-139.
[2]马小良. 偏导射流电液伺服阀工程化建模及仿真研究[J]. 液压与气动, 2015(3): 83-85.
MA Xiaoliang. Model and simulation for deflector jet electrohydraulic servovalve[J]. Chinese Hydraulics & Pneumatics, 2015(3): 83-85.
[3]蒋大伟. 偏转板射流伺服阀的前置级流场仿真与动态特性研究[D]. 镇江:江苏大学,2016.
[4]宁月光. 偏转板射流伺服阀的多软件联合仿真[J]. 液压气动与密封, 2015(7):41-43.
NING Yueguang.  Multi-software integrated simulation on servo valve with deflector jet[J]. Hydraulics Pneumatics & Seals, 2015(7):41-43.
[5]王书铭, 左哲清, 延皓, 等. 偏导射流伺服阀建模及动态特性研究[J]. 兵工学报, 2018,39(3):598-607.
WANG Shuming, ZUO Zheqing, YAN Hao, et al. Dynamic modeling and characteristics investigation of jet deflector servo valve[J]. Acta Armamentarii, 2018, 39(3): 598-607.
[6]訚耀保, 张鹏, 岑斌. 偏转板射流伺服阀前置级流场分析[J]. 中国工程机械学报, 2015, 13(1):1-7.
YAN Yaobao, ZHANG Peng, CEN Bin. Pre-stage flow field analysis on deflector jet servo valves[J]. Chinese Journal of Construction Machinery, 2015,13(1):1-7.
[7]刘增光, 杨国来, 岳大灵, 等. 偏转板射流阀压力特性数值模拟分析[J]. 液压与气动, 2016(2):76-79.
LIU Zengguang, YANG Guolai, YUE Daling, et al. Numerical simulation of pressure characteristics of deflector jet valve[J]. Chinese Hydraulics & Pneumatics, 2016(2):76-79.
[8]李竞, 延皓, 任玉凯, 等. 偏导射流伺服阀前置级流场特性研究[J]. 兵工学报, 2018, 39(5):1012-1021.
LI Jing, YAN Hao, REN Yukai, et al. Research on flow field in pre-stage of jet deflector servo valve[J]. Acta Armamentarii, 2018, 39(5): 1012-1021.
[9]康硕, 延皓, 李长春, 等. 偏导射流式伺服阀前置级流场建模及特性分析[J]. 哈尔滨工程大学学报, 2017,38(8):1293-1302.
KANG Shuo, YAN Hao, LI Changchun, et al. Modeling of the flow distribution and characteristics analysis of the pilot stage in a deflector jet servo valve[J]. Journal of Harbin Engineering University, 2017, 38(8):1293-1302.
[10]张雨. 偏导射流伺服阀前置级流场仿真与试验研究[D]. 北京:北京交通大学,2018.
[11]YAN Hao, WANG Fengju, LI Changchun, et al. Research on the jet characteristics of the deflector-jet mechanism of the servo valve[J]. Chinese Physics B, 2017(4):256-264.
[12]延皓, 康硕, 宋佳, 等. 基于仿真离散数据的偏转板射流式伺服阀液动力计算方法研究[J]. 机械工程学报, 2016, 52(12):181-191.
YAN Hao, KANG Shuo, SONG Jia, et al. Research on the calculation methods of fluid force at prestage of jet deflector servo valve based on the simulated discrete data[J]. Journal of Mechanical Engineering, 2016,52(12):181-191.
[13]张圣卓. 喷嘴挡板伺服阀前置级流场瞬态气穴及其流致现象研究[D].哈尔滨:哈尔滨工业大学, 2006.
[14]刘玉龙. 压力伺服阀啸叫机理分析[D]. 杭州:浙江大学,2017.
[15]LI S, AUNG N Z, ZHANG S, et al. Experimental and numerical investigation of cavitation phenomenon in flapper-nozzle pilot stage of an electrohydraulic servo-valve[J]. Computers & Fluids, 2013, 88:590-598.
[16]AUNG N Z, LI S. A numerical study of cavitation phenomenon in a flapper-nozzle pilot stage of an electrohydraulic servo-valve with an innovative flapper shape[J]. Energy Conversion and Management, 2014, 77:31-39.
[17]ZHANG S, LI S. Cavity shedding dynamics in a flapper-nozzle pilot stage of an electro-hydraulic servo-valve: experiments and numerical study[J]. Energy Conversion and Management, 2015, 100:370-379.
[18]李松晶, 彭敬辉, 张亮. 伺服阀力矩马达衔铁组件的振动特性分析[J]. 兰州理工大学学报, 2010, 36(3):38-41.
LI Songjing,PENG Jinghui,ZHANG Liang. Analysis of vibrational characteristics of armature assembly in a hydraulic torque motor for servo valve[J].Joumal of Lanzhou University of Technology, 2010, 36(3):38-41.
[19]彭敬辉. 多场耦合的伺服阀力矩马达衔铁组件振动特性研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
[20]李松晶, 吕欣倍. 喷嘴挡板伺服阀前置级流固耦合特性研究[J]. 液压与气动, 2017(6):1-6.
LI Songjing, L Xinbei. Fluid-structure interaction in the pilot stage of flapper-nozzle hydraulic servo valve[J]. Chinese Hydraulics & Pneumatics, 2017(6): 1-6.
[21]LI L, YAN H, ZHANG H, et al. Numerical simulation and experimental research of the flow force and forced vibration in the nozzle-flapper valve[J]. Mechanical Systems and Signal Processing, 2018, 99:550-566.
[22]袁建平,侯敬生,付燕霞. 离心泵回流漩涡空化的非定常特性研究[J]. 振动与冲击, 2018, 37(16): 24-30.
YUAN Jianping, HOU Jingsheng, FU Yanxia. A study on the unsteady characteristics of the backflow vortex cavitation in a centrifugal pump[J]. Journal of Vibration and Shock, 2018, 37(16): 24-30.
[23]刘秀梅,徐化文,李贝贝, 等. 液压节流阀内非定常空化特性的数值分析[J]. 振动与冲击, 2019, 38(3): 89-95.
LIU Xiumei, XU Huawen, LI Beibei, et al. Numerical analysis for unsteady cavitation characteristics in throttle valve[J]. Journal of Vibration and Shock, 2019, 38(3): 89-95.
[24]王松林, 谭磊, 王玉川, 等. 离心泵瞬态空化流动及压力脉动特性[J]. 振动与冲击, 2013,32(22):173-178.
WANG Songlin,TAN Lei,WANG Yuchuan, et al. Characteristics of transient cavitation flow and pressure fluctuation for centrifugal pump[J]. Journal of Vibration and Shock, 2013, 32(22): 173-178.
[25]顾振杰,白长青. 柱塞泵压力脉动随机动力特性分析及实验研究[J]. 振动与冲击, 2019, 38(16): 188-191.
GU Zhenjie, BAI Changqing . Stochastic dynamic analysis and experimental study on pressure fluctuation of plunger pumps[J]. Journal of Vibration and Shock, 2019, 38(16): 188-191.

PDF(2300 KB)

Accesses

Citation

Detail

段落导航
相关文章

/