[1]ZAVODNEY L D, NAYFEH A H. The non-linear response of a slender beam carrying a lumped mass toa principal parametric excitation: theory and experiment[J]. International Journal of Non-Linear Mechanics, 1989, 24(2): 105-125.
[2]HIROSHI Y, YOSHIRO I, NOBUHARU A. Nonlinear analysis of a parametrically excited cantilever beam effect of the tip mass on stationary response(special issue on nonlinear dynamics)[J]. JSME International Journal, 2008, 41(3): 555-562.
[3]NAYFEH A H, PAI P F. Non-linear non-planar parametric responses of an in-extensional beam[J]. International Journal of Non-Linear Mechanics, 1989, 24(2): 139-158.
[4]DWIVEDY S K, KAR R C. Nonlinear response of a parametrically excited system using higher-order method of multiple scales[J]. Nonlinear Dynamics, 1999, 20(2): 115-130.
[5]HAMDAN M N, AL-QAISIA A A, AL-BEDOOR B O. Comparison of analytical techniques for nonlinear vibrations of a parametrically excited cantilever[J]. International Journal of Mechanical Sciences, 2001, 43(6): 1521-1542.
[6]AKBARZADE M, FARSHIDIANFAR A. Nonlinear transversely vibrating beams by the improved energy balance method and the global residue harmonic balance method[J]. Applied Mathematical Modelling, 2017, 45: 393-404.
[7]NIKKAR A, BAGHERI S, SARAVI M. Dynamic model of large amplitude vibration of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia[J]. Latin American Journal of Solids and Structures, 2014, 11(2): 320-329.
[8]FENG Z H, LAN X J, ZHU X D. Explanation on the importance of narrow-band random excitation characters in the response of a cantilever beam[J]. Journal of Sound and Vibration, 2009, 325(4): 923-937.
[9]FENG Z H, ZHU X D, LAN X J. Stochastic jump and bifurcation of a slender cantilever beam carrying a lumped mass under narrow-band principal parametric excitation[J]. International Journal of Non-Linear Mechanics, 2011, 46(10): 1330-1340.
[10]GE G, YAN W K. Cantilever model with curvature nonlinearity and longitudinal inertia excited by lateral basal moments being Gaussian white noise[J]. Journal of Vibroengineering, 2018, 20(1): 677-690.
[11]WU Y, HE J H. Homotopy perturbation method for nonlinear oscillators with coordinate-dependent mass[J]. Results in Physics, 2018, 10: 270-271.
[12]LEV B I, TYMCHYSHYN V B, ZAGORODNY A G. On certain properties of nonlinear oscillator with coordinate-dependent mass[J]. Physics Letters A, 2017, 381(39): 3417-3423.
[13]LANDAU P S, STRATONOVICH R L. Theory of stochastic transitions of various systems between different states[J]. Proceedings of Moscow University, Series, III, Vestinik, MGU, 1962, pp.33-45.
[14]KHAS’MINSKII R Z. On the behavior of a conservative system
with small friction and small random noise[J]. Journal of Applied Mathematics and Mechanics, 1964, 28(5): 1126-1130.
[15]GE G, LI Z P. A modified stochastic averaging method on single-degree-of-freedom strongly nonlinear stochastic vibrations[J]. Chaos Soliton & Fract, 2016, 91: 469-477.
[16]LAURA P A A, POMBO J L, SUSEMIHI E A. A note on the vibrations of a clamped-free beam with a mass at the free end[J]. Journal of Sound and Vibration, 1974, 37(2): 161-168.
[17]HE J H. Preliminary report on the energy balance for nonlinear oscillations[J]. Mechanics Research Communications, 2002, 29(2/3): 107-111.
[18]王栋. 附带有考虑集中质量的转动惯性的梁固有振动分析[J]. 振动与冲击,2010, 29(11): 221-225.
WANG Dong. Vibration analysis of a beam carrying lumped masses with both translational and rotary inertias[J]. Journal of Vibration and Shock, 2010, 29(11): 221-225.
[19]朱位秋.非线性随机动力学与控制——Hamilton理论体系框架[M]. 北京:科学出版社,2003.
[20]GE G, BO Z. Response of a cantilever model with a surface crack under basal white noise excitation[J]. Computers & Mathematics with Applications, 2018, 76(11/12): 2728-2743.
[21]朱海涛,段玲龙. 附加集中质量块悬臂梁路径积分法分析[J]. 武汉理工大学学报,2015, 37(4): 77-82.
ZHU Haitao, DUAN Linglong. Path integration analysis on a cantilever beam with a lumped mass[J]. Journal of Wuhan University of Technology, 2015, 37(4): 77-82.
[22]ADAMU M Y, OGENYI P, TAHIR A G. Analytical solutions of nonlinear oscillator with coordinate-dependent mass and Euler-Lagrange equation using the parameterized homotopy perturbation method[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(3/4): 1028-1035.
[23]薄喆,葛根. 基于超几何函数和梅哲 G 函数的变截面梁的非线性振动建模及自由振动[J]. 振动与冲击,2019, 38(23): 82-88.
BO Zhe, GE Gen. Nonlinear dynamic modelling and free vibration for a tapered cantilever beam based on hyper-geometric function and Meijer-G function[J]. Journal of Vibration and Shock, 2019, 38(23): 82-88.
[24]HONEYCUTT R L. Stochastic Runge-Kutta algorithms. I: white noise[J]. Physical Review A: Atomic, Molecular and Optical Physics, 1992, 45(2): 600-603.