针对传统的基于频响的模型修正算法在计算规模较大时效率较低的问题,提出一种基于缩减基的有限元模型修正方法:将系统的位移表示为模态综合缩减基或模态振型缩减基的线性叠加,把自然坐标映射至缩减坐标下,使得修正过程均在缩减坐标上进行;并在缩减坐标上引入移频方法实现频响修正,改善了修正参数的收敛速度;采用了一种精度较高的分段频响扩充方法,减小扩充过程带来的额外误差。与基于缩聚的方法对比,基于缩减基的方法在计算效率和精度上更具优越性。 GARTEUR飞机仿真算例和转向架试验的修正结果表明:该方法修正精度较高,性能稳健,有限元模型规模较大时可高效地得到良好的修正结果。
Abstract
In order to solve the problem of traditional model updating algorithm based on FRF during larger calculation scale having lower efficiency, a finite element (FE) model updating method based on reduced bases was proposed. Displacements of the system were expressed as linear superposition of modal synthesis reduced bases or modal shape reduced bases, and the natural coordinates were mapped into the reduced coordinates, so that the updating process was performed in the reduced coordinates. The frequency shift method was introduced into the reduced coordinates to realize FRF correction, and improve convergent speed of the updated parameters. A segmented FRF expanding method with higher accuracy was adopted to reduce additional error caused by the expanding process. Compared with the method based on condensation, the method based on reduced bases was more efficient and accurate. The updating results of GARTEUR aircraft simulation examples and bogie tests showed that the proposed method has higher accuracy and better robust performance; using it can efficiently obtain good correction results when the FE model has a larger scale.
关键词
有限元模型修正 /
频响函数 (FRF) /
缩减基 /
移频方法 /
快速修正
{{custom_keyword}} /
Key words
finite element (FE) model updating /
frequency response function (FRF) /
reduced basis /
frequency shift method /
fast correction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]张令弥. 动态有限元模型修正技术及其在航空航天结构中的应用[J]. 强度与环境, 1994(2): 10-17.
ZHANG Lingmi. Dynamic finite element model updating and its application in aerospace structures[J]. Structure & Environment Engineering, 1994(2): 10-17.
[2]GUO N, YANG Z, JIA Y,et al. Model updating using correlation analysis of strain frequency response function[J]. Mechanical Systems and Signal Processing, 2016, 27(70/71): 284-299.
[3]冷建成, 田洪旭, 徐爽, 等. 基于优化Kriging模型的平台结构动力学模型修正[J]. 振动与冲击, 2019, 38(18): 18-23.
LENG Jiancheng,TIAN Hongxu,XU Shuang, et al. Dynamics model updating of an offshore platform structure based on optimized Kriging model[J]. Journal of Vibration and Shock, 2019, 38(18): 18-23.
[4]ESFANDIARI A. Structural model updating using incomplete transfer function of strain data[J]. Journal of Sound & Vibration, 2014, 333(16): 3657-3670.
[5]LIN R M. Function-weighted frequency response function sensitivity method for analytical model updating[J]. Journal of Sound and Vibration, 2017, 27(403): 59-74.
[6]BATOU A. A sensitivity-based one-parameter-at-a-time model updating method[J]. Mechanical Systems and Signal Processing, 2019, 27(122): 247-255.
[7] 张以帅. 基于频响函数的有限元模型修正方法及实验研究[D]. 上海:上海交通大学, 2009.
[8]IMREGUN M, VISSER W J, EWINS D J. Finite element model updating using frequency response function data: I.Theory and initial investigation[J]. Mechanical Systems and Signal Processing, 1995, 9(2): 187-202.
[9]LIN R M, ZHU J. Finite element model updating using vibration test data under base excitation[J]. Journal of Sound and Vibration, 2007, 303(3-5): 596-613.
[10]MODAK S V, KUNDRA T K, NAKRA B C. Comparative study of model updating methods using simulated experimental data[J]. Computers & Structures, 2002, 80(5/6): 437-447.
[11]SESTIERI A, D’AMBROGIO W. Why be modal: how to avoid the use of modes in the modification of vibrating systems[J]. International Journal of Analytical and Experimental Modal Analysis, 1989, 26(4): 25-30.
[12]PASCUAL R, GOLINVAL J C, RAZETO M. A frequency domain correlation technique for model correlation and updating[J]. Proceedings of Spie the International Society for Optical Engineering, 1997, 27(1): 284-299.
[13]PASCUAL R, SCHLCHLI R,RAZETO M. Robust parameter identification using forced responses[J]. Mechanical Systems & Signal Processing, 2007, 21(2): 1008-1025.
[14]GANG X, CHAI S, ALLEMANG R J, et al. A new iterative model updating method using incomplete frequency response function data[J]. Journal of Sound and Vibration, 2014, 333(9): 2443-2453.
[15]LI W M, HONG J Z . New iterative method for model updating based on model reduction[J]. Mechanical Systems and Signal Processing, 2011, 25(1):180-192.
[16]PAPADIMITRIOU C, PAPADIOTI D C . Component mode synthesis techniques for finite element model updating[J]. Computers & Structures, 2013, 126(1): 15-28.
[17]王陶, 何欢, 闫伟, 等. 一种利用子结构综合技术的模型修正方法[J]. 振动与冲击, 2017,36(2):147-152.
WANG Tao,HE Huan,YAN Wei, et al. Mode updating approach based on improved component mode synthesis[J]. Journal of Vibration and Shock, 2017,36(2):147-152.
[18]张德文, 魏阜旋. 模型修正与破损诊断[M]. 北京:科学出版社, 1999.
[19]PU Qianhui, HONG Yu, CHEN Liangjun, et al.Model updating-based damage detection of a concrete beam utilizing experimental damped frequency response functions[J]. Advances in Structural Engineering, 2019, 22(4): 935-947.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}