换流变阀侧套管振动模态及其法兰根部应力研究

赵莉华,蔡维哲,黄小龙,任俊文,贾利川,王仲

振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 201-209.

PDF(1800 KB)
PDF(1800 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 201-209.
论文

换流变阀侧套管振动模态及其法兰根部应力研究

  • 赵莉华,蔡维哲,黄小龙,任俊文,贾利川,王仲
作者信息 +

Vibration mode and flange root stress of side bushing of converter transformer valve

  • ZHAO Lihua, CAI Weizhe, HUANG Xiaolong, REN Junwen, JIA Lichuan, WANG Zhong
Author information +
文章历史 +

摘要

套管法兰是换流变压器阀侧套管的薄弱部位,承受着换流变振动等复杂环境动力,易因长期机械载荷作用出现疲劳开裂,导致换流变压器停运。应力集中是导致结构疲劳开裂的主要因素,但现在少有针对法兰应力分布和疲劳的研究。为优化套管法兰根部结构、提高法兰疲劳强度,采用有限元仿真方法分析法兰应力分布,研究不同根部结构下法兰应力集中特征,并采用模态分析和响应谱分析研究振动载荷下法兰应力分布。研究发现:应力集中在法兰拐角位置并随法兰拐角曲率半径增加而降低;套筒上与法兰盘连接的加强筋能明显降低法兰拐角应力,降低幅度随加强筋宽度和高度增加而提升;三角形加强筋在靠近应力集中位置时能明显降低法兰拐角应力,降低幅度随加强筋安装角度增加而减小;连接的加强筋还对套管受竖直方向和轴向振动时法兰拐角最大应力有明显抑制作用。

Abstract

Bushing flange is the weak part of side bushing of converter transformer valve, it is subjected to complex environmental dynamic forces, such as, vibration of converter transformer, and it is easy to have fatigue cracking due to long-term action of mechanical load, and cause shutdown of converter transformer. Stress concentration is the main factor leading to structural fatigue cracking, but there are few studies on stress distribution and fatigue of flanges. Here, in order to optimize root structure of bushing flange and improve its fatigue strength, the FE simulation method was used to analyze stress distribution of flange, and study stress concentration characteristics of flange under different root structures. The modal analysis and response spectrum analysis were used to study stress distribution of flange under vibration load. The study results showed that stress is concentrated at flange corner and decreases with increase in curvature radius of flange corner; the stiffener connected with flange on bushing can obviously reduce flange corner stress, and the reduction amplitude increases with increase in width and height of stiffener; triangular stiffener can obviously reduce flange corner stress near stress concentration position, and the reduction amplitude decreases with increase in installation angle of  stiffener; the maximum stress at flange corner of the bushing subjected to vertical and axial vibrations is obviously suppressed by the connected stiffener.

关键词

中换流变压器阀侧套管 / 法兰 / 有限元分析 / 应力集

Key words

side bushing of converter transformer valve / flange / finite element (FE) analysis / stress concentration

引用本文

导出引用
赵莉华,蔡维哲,黄小龙,任俊文,贾利川,王仲. 换流变阀侧套管振动模态及其法兰根部应力研究[J]. 振动与冲击, 2021, 40(13): 201-209
ZHAO Lihua, CAI Weizhe, HUANG Xiaolong, REN Junwen, JIA Lichuan, WANG Zhong. Vibration mode and flange root stress of side bushing of converter transformer valve[J]. Journal of Vibration and Shock, 2021, 40(13): 201-209

参考文献

[1]孙夏青, 赵林杰, 王文奎, 等. 换流变压器阀侧套管选型技术[J]. 南方电网技术, 2015, 9(4): 60-67. 
SUN Xiaqing, ZHAO Linjie, WANG Wenkui, et al. Type selection technology of valve-side bushing of converter transformer[J]. Southern Power System Technology, 2015, 9(4): 60-67.
[2]ZHANG Enyue, WEN Zheng, LI Wei, et al . Development and its application of D C bushings of valve hall side of converter transformer[C]//2014 International Conference on Power System Technology. Chengdu: IEEE, 2014.
[3]姜东飞, 蔡晶, 赵海鹏, 等. 振动模态下复合套管电场仿真分析[J]. 智慧电力, 2018, 46(11): 112-116.
JIANG Dongfei, CAI Jing, ZHAO Haipeng, et al. Simulation analysis of electric field in composite bushing under vibration modes[J]. Smart Power, 2018, 46(11): 112-116.
[4]李鹏程. 基于振动信号分析法的换流变压器振动特性及其影响因素研究[J]. 高压电器, 2018, 54(4): 142-151.
LI Pengcheng. Vibration characteristics and influential factors of converter transformer based on vibration signal analysis[J]. High Voltage Apparatus, 2018, 54(4): 142-151.
[5]唐文秋. 应力集中、尺寸和表面对金属疲劳强度影响的研究[D]. 沈阳:东北大学, 2008.
[6]胡本润,刘建中,陈剑峰, 疲劳缺口系数K_f与理论应力集中系数K_t之间的关系[J]. 材料工程, 2007(7): 70-73.
HU Benrun,LIU Jianzhong, CHEN Jianfeng, Relationship between fatigue notch factor K_f and stress concentration factor K_t[J]. Journal of Materials Engineering, 2007(7): 70-73.
[7]MIRANDA A C D O, ANTUNES M A, ALARCN M V G, et al. Use of the stress gradient factor to estimate fatigue stress concentration factors Kf[J]. Engineering Fracture Mechanics, 2019, 206: 250-266.
[8]何畅, 谢强, 马国梁, 等. ±800 kV换流变压器-套管体系的抗震性能[J]. 高电压技术, 2018, 44(6): 1878-1883.
HE Chang, XIE Qiang, MA Guoliang, et al. Seismic behavior of ±800 kV UHV converter transformer and bushing system[J]. High Voltage Engineering, 2018, 44(6): 1878-1883.
[9]孙宇晗, 程永锋, 卢智成, 等. 1 100 kV复合外绝缘套管地震模拟振动台试验研究[J]. 高电压技术, 2017, 43(10): 3224-3230.
SUN Yuhan, CHENG Yongfeng, LU Zhicheng, et al. Study on earthquake simulation shaking table test of 1 100 kV composite external insulation bushing[J].High Voltage Engineering, 2017, 43(10): 3224-3230.
[10]王明胜, 杨仁毅, 李乃一, 等. 换流变压器阀侧直流套管机械性能三维仿真[J]. 山东电力技术, 2015, 42(2): 64-68.
WANG Mingsheng, YANG Renyi, LI Naiyi, et al. Three-dimensional simulation on mechanical property of DC_bushing for the converter transformer[J].Shandong Electric Power, 2015, 42(2): 64-68.
[11]吴光亚, 孙岗, 张锐, 等. 特高压空心复合绝缘子机械强度有限元计算分析[J]. 电瓷避雷器, 2014(4): 7-13.
WU Guangya, SUN Gang, ZHANG Rui, et al. Calculation and analysis on mechanical strength of UHV hollow_composite insulator by finite element method[J].Insulators and Surge Arresters, 2014(4): 7-13.
[12]黄清, 方江, 徐平晶. 弯矩载荷下的带筋法兰盘厚度设计[J]. 机械工程师, 2017(6): 101-103.
HUANG Qing, FANG Jiang, XU Pingjing. Design of rigid flange thickness subjected to bending moment[J].Mechanical Engineer, 2017(6): 101-103.
[13]徐赵东. 结构动力学[M]. 北京: 科学出版社, 2007.
[14]GUPTA A K. Response spectrum method in seismic analysis and design of structures[M]. London: Routledge, 2017.
[15]CHEN J, LI G, RACIC V. Acceleration response spectrum for predicting floor vibration due to occupants jumping[J]. Engineering Structures, 2016, 112: 71-80.
[16]刘庆林. 传统反应谱CQC法研究与改进[D]. 杭州:浙江大学, 2007.
[17]王誉瑾, 钱宏亮, 范峰. 结构用铝合金6082-T6材料本构关系及力学参数试验研究[J]. 工程力学, 2013, 30(增刊1): 309-313. 
WANG Yujin, QIAN Hongliang, FAN Feng. Experimental study on stress-strain relationship and mechanical properties of aluminum alloy 6082-T2[J]. Engineering Mechanics, 2013,30(Sup1): 309-313.

PDF(1800 KB)

Accesses

Citation

Detail

段落导航
相关文章

/