统计能量分析方法及应用综述

林天然,李震

振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 222-238.

PDF(1813 KB)
PDF(1813 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 222-238.
论文

统计能量分析方法及应用综述

  • 林天然,李震
作者信息 +

Overview of statistical energy analysis and its applications

  • LIN Tianran, LI Zhen
Author information +
文章历史 +

摘要

统计能量分析(statistical energy analysis, SEA)是一种处理复杂耦合系统高频动力学响应的常用计算方法。该综述从经典统计能量分析(classical statistical energy analysis, CSEA)入手,详细介绍CSEA演化为SEA的进展历程,并从理论发展和实际工程应用过程两方面对前人所做的大量工作进行概述,对SEA提出至今的理论推导及应用最新进展进行了系统归纳分析和总结。详细介绍总结了统计能量分析在工程实际中的一些典型成功应用案例及未来研究趋势。

Abstract

Statistical energy analysis (SEA) is a common method to deal with high frequency dynamic response of complex coupled systems. Here, starting from the classical statistical energy analysis (CSEA), the evolution process from CSEA to SEA was introduced in detail. A lot of studies done by past researchers were summarized from the two aspects of theoretical development and practical engineering application process. The latest development of theoretical derivation and application of SEA were analyzed and summarized. Some typical successful application cases and future studying trends of SEA in engineering practice were introduced and summarized in detail.

关键词

统计能量分析 / 模态密度 / 内损耗因子 / 耦合损耗因子 / 中高频声振响应

Key words

statistical energy analysis (SEA) / modal density / internal loss factor / coupling loss factor / middle and high frequency response

引用本文

导出引用
林天然,李震. 统计能量分析方法及应用综述[J]. 振动与冲击, 2021, 40(13): 222-238
LIN Tianran, LI Zhen. Overview of statistical energy analysis and its applications[J]. Journal of Vibration and Shock, 2021, 40(13): 222-238

参考文献

[1]LYON R H, MAIDANIK G. Power flow between linearly coupled oscillators[J]. The Journal of the Acoustical Society of America, 1962, 34(5):623-639.
[2]SAWLEY R J. Application of statistical energy analysis to a noise and vibration problem in a small motor vessel[J]. The Journal of the Acoustical Society of America, 1969, 46(1A):99.
[3]JENS F, STEFAN T, CAN C A, et al. Modelling the interior sound field of a railway vehicle using statistical energy analysis[J]. Applied Acoustics, 2012, 73(4):307-311.
[4]潘凯, 陈欢. 统计能量分析在公路隧道声学设计中的应用[J]. 噪声与振动控制, 2008(6):101-104.
PAN Kai, CHEN Huan. Application of statistical energy analysis in acoustic design of road tunnel[J]. Noise and Vibration Control, 2008(6):101-104.
[5]SMITH P W. Response and radiation of structural modes excited by sound[J]. The Journal of the Acoustical Society of America, 1962, 34(5):640-647.
[6]姚德源, 王其政. 统计能量分析原理及其应用[M]. 北京:北京理工大学出版社, 1995.
[7]LYON R H. Statistical analysis of power injection and response in structures and rooms[J]. The Journal of the Acoustical Society of America, 1969, 45(3):545-565.
[8]SZECHENYI E. Modal densities and radiation efficiencies of unstiffened cylinders using statistical methods[J]. Journal of Sound and Vibration, 1971, 19(1): 65-81.
[9]LYON R H. Statistical energy analysis of dynamical systems:theory and applications[M]. Cambridge, MA: MIT Press, 1975.
[10]SUN J C, LALOR N, RICHARDS E J,et al. Power flow and energy balance of non-conservatively coupled structures[J]. Journal of Sound and Vibration, 1987, 112(2):321-343.
[11]FAHY F J, YAO D Y. Power flow between non-conservatively coupled oscillators[J]. Journal of Sound and Vibration, 1987, 114(1):1-11.
[12]孙进才,王敏庆,盛美萍. 统计能量分析(SEA)研究的新进展[J]. 自然科学进展:国家重点实验室通讯, 1998, 8(2):129-136.
SUN Jincai, WANG Minqing, SHENG Meiping. New progress in statistical energy analysis (SEA) research[J]. Progress in Natural Science:State Key Laboratory Newsletter, 1998, 8(2):129-136.
[13]盛美萍. 复杂耦合系统的统计能量分析及其应用[J]. 中国工程科学, 2002, 4(6):77-84.
SHENG Meiping. Statistical energy analysis for complicated coupled system and its application in engineering[J]. Engineering Science, 2002, 4(6):77-84.
[14]FAHY F J. Statistical energy analysis:a critical overview[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1994, 346(1681):431-447.
[15]CHEN Shuming, WANG Dengfeng, CHEN Xin,et al. A survey of statistical energy analysis methods for vehicle middle-high frequency noise[J]. Computer Simulation, 2009, 26(4):287-291.
[16]CHEN G, SOONG T T. Power flow and energy balance between nonconservatively coupled oscillators[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 1991, 113(4):448-454.
[17]NORTON M P, FAHY F J. Experiments on the correlation of dynamic stress and strain with pipe wall vibrations for statistical energy analysis applications[J]. Noise Control Engineering Journal, 1988, 30:107-117.
[18]NORTON M P, KARCZUB D G. Statistical energy analysis of noise and vibration[J]. Fundamentals of Noise and Vibration Analysis for Engineers, 1987, 6:383-440.
[19]SUN Jincai, SUN Zhaohui, WANG Chong. Power flow between three series coupled oscillators[J]. Journal of Sound and Vibration, 1996, 189(2):215-229.
[20]SUN Jincai, WANG Chong, SUN Zhaohui. Modification of energy balance equations in statistical energy analysis[J]. Chinese Journal of Acoustics, 1996, 15(1):1-7.
[21]GULIZIA G, PRICE A J. Power flow between strongly coupled oscillators[J]. The Journal of the Acoustical Society of America, 1977, 61(6):1511-1515.
[22]FINNVEDEN S. Ensemble averaged vibration energy flows in a three-element structure[J]. Journal of Sound and Vibration, 1995, 187(3):495-529.
[23]HERON K H. Advanced statistical energy analysis[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1994, 346(A):501-510.
[24]KEANE A J, PRICE W G. Statistical energy analysis of strongly coupled systems[J]. Journal of Sound and Vibration, 1987, 117(2):363-386.
[25]SMITH P W. Statistical models of coupled dynamical systems and the transition from weak to strong coupling[J]. The Journal of the Acoustical Society of America, 1979, 65(3):695-698.
[26]CUSCHIERI J M, SUN J C. Use of statistical energy analysis for rotating machinery, Part I: determination of dissipation and coupling loss factors using energy ratios[J]. Journal of Sound and Vibration, 1994, 170(2):181-190.
[27]张建, 顾崇衔. 相关输入时保守或非保守耦合系统的统计能量分析[J]. 振动工程学报, 1990, 3(4):10-17.
ZHANG Jian, GU Chongxian. Principle of statistical energy analysis for conservatively or non-conservatively coupled systems under correlative excitations[J]. Journal of Vibration Engineering, 1990, 3(4):10-17.
[28]罗世辉, 沈荣瀛, 严济宽. 非保守耦合振子的能量预估及功率流特点[J]. 振动工程学报, 1992, 5(3):263-267.
LUO Shihui, SHEN Rongying, YAN Jikuan. Energy prediction and power flow of non-conservatively coupled oscillators[J]. Journal of Vibration Engineering, 1992, 5(3):263-267.
[29]DOWELL E H, KUBOTA Y. Asymptotic modal analysis and statistical energy analysis of dynamical systems[J]. Journal of Applied Mechanics, 1985, 52(4):949-957.
[30]李湘南, 林哲. 船舶机械设备连接处非保守耦合损耗因子的研究[J]. 中国海洋平台, 2004, 19(5):44-48.
LI Xiangnan, LIN Zhe. Study on non-conservatively coupled loss factor of joints between ship mechanic equipment[J]. China offshore Platform, 2004, 19(5):44-48.
[31]张建, 顾崇衔. 非保守耦合系统的统计能量分析原理[J]. 声学学报, 1993, 18(1):68-73.
ZHANG Jian, GU Chongxian. Principle of statistical energy analysis for non-conservatively coupled systems[J]. Acta Acustica, 1993, 18(1):68-73.
[32]SUN Jincai, WANG Minqing, SHENG Meiping. A new advance in statistical energy analysis[J]. Progress in Natural Science, 1997, 7(6):641-648.
[33]明瑞森, 孙进才. 非保守耦合系统中耦合元损耗能量的分配关系[J]. 振动与冲击, 1989, 8(4):37-43.
MING Ruisen, SUN Jincai. Loss energy distribution of coupling elements in a non-conservative coupled systems[J]. Journal of Vibration and Shock, 1989, 8(4):37-43.
[34]盛美萍, 王敏庆, 孙进才, 等. 非保守耦合系统的等效内损耗因子[J]. 声学学报, 1997, 22(6):555-561.
SHENG Meiping, WANG Minqing, SUN Jincai, et al. Equivalent internal loss factors for non-conservative coupled systems[J]. Acta Acustica, 1997, 22(6):555-561.
[35]SUN Zhaohui, SUN Jincai, WANG Chong, et al. Analysis of the causes of formation of negative loss factors[J]. Acta Acustica, 1996, 15(3):239-246.
[36]BESHARA M, KEANE A J. Statistical energy analysis of multiple, non-conservatively coupled systems[J]. Journal of Sound and Vibration, 1996, 198(1):95-122.
[37]CUSCHIERI J M, SUN J C. Use of statistical energy analysis for rotating machinery, PartⅡ:coupling loss factors between indirectly coupled substructures[J]. Journal of Sound and Vibration, 1994, 170(2):191-201.
[38]盛美萍, 孙进才, 王敏庆, 等. 直接和间接耦合损耗因子的计算方法[J]. 噪声与振动控制, 1997, 6:2-8.
SHENG Meiping, SUN Jincai, WANG Minqing,et al. Calculation method of direct and indirect coupling loss factors[J]. Noise and Vibration Control, 1997, 6:2-8.
[39]王敏庆, 盛美萍, 任克明, 等. 三串联非保守耦合振子功率流 Ⅰ:理论[J]. 声学学报, 1997, 22(6):501-508.
WANG Minqing, SHENG Meiping, REN Keming,et al. Power flows of three series non-conservatively coupled oscillators, part Ⅰ:theroy[J]. Acta Acustica, 1997, 22(6):501-508. 
[40]LAI M L, SOOM A. Prediction of transient vibration envelopes using statistical energy analysis techniques[J]. Journal of Vibration and Acoustics, 1990,112(1):127-137.
[41]PINNINGTON R, LEDNIK D. Transient statistical energy analysis of an impulsively excited two oscillator system[J]. Journal of Sound and Vibration, 1996,189(2):249-264.
[42]周凤敏, 张建, 亓永. 瞬态激励下保守耦合系统的统计能量分析[J]. 山东理工大学学报(自然科学版), 2006,20(1):84-87.
ZHOU Fengmin, ZHANG Jian, QI Yong. Statistical energy analysis of conservatively coupled systems under transient excitations[J]. Journal of Shandong University of Technology(Science and Technology), 2006, 20(1):84-87.
[43]唐宵东. 瞬态振动的统计能量分析[D]. 北京:北京理工大学, 1998.
[44]LANGLEY R S, HAWS D H, BUTLIN T.et al. A derivation of  the transient statistical energy analysis (TSEA)  equations with benchmark applications to plate systems[J]. Journal of Sound and Vibration, 2019, 445:88-102.
[45]ANTONIO C, WALTER D, ANNALISA F, et al. Vibroacoustic optimization using a statistical energy analysis model[J]. Journal of Sound and Vibration, 2016, 375:102-144.
[46]向树红, 王大钧, 于丹, 等. 统计能量分析参数的综合确定方法及应用[J]. 振动工程学报, 2004, 17(4):105-110.
XIANG Shuhong, WANG Dajun, YU Dan, et al. Comprehensive method of SEA parameter determination and its applications[J]. Journal of Vibration Engineering, 2004, 17(4):105-110.
[47]CLARKSON B L, RANKY M F. On the measurement of the coupling loss factor of structural connections[J]. Journal of Sound and Vibration, 1984, 94(2):249-261.
[48]LALOR N. The measurement of SEA loss factor on a fully assembled structure[D]. Southampton:  University of Southampton, UK, 1987.
[49]BAKEL J G, VRIES D D. Parameter sensitivity of a T-junction SEA model:the importance of the internal damping loss factor[J]. Journal of Sound and Vibration, 1983, 90(3):373-380.
[50]陈飞, 董萼良. 点导纳法的模态密度测试试验[J]. Noise and Vibration Control, 2017, 37(1):183-187.
CHEN Fei, DONG Eliang. Modal density measurement test based on point admittance method[J]. Noise and Vibration Control, 2017, 37(1):183-187.
[51]ZHOU R, CROCKER J M. Sound transmission loss of foam- filled honeycomb sandwich panels using statistical energy analysis and theoretical and measured dynamic properties[J]. Journal of Sound and Vibration, 2010, 329(6):673-686.
[52]LYON R H, DEJONG R G, HECKL M. Theory and application of statistical energy analysis, Second Edition[J]. The Journal of the Acoustical Society of America, 1995, 98(6):3021.
[53]秦朝红, 任方, 张忠, 等. 统计能量分析参数获取技术的应用[J]. 航天器环境工程, 2017, 34(1):8-14.
QIN Zhaohong, REN Fang, ZHANG Zhong, et al. Application of the method for acquiring SEA parameters[J]. Spacecraft Environment Engineering, 2017, 34(1):8-14.
[54]RENJI K, NARAYANAN S, NAIR P S. Modal density of composite honeycomb sandwich panels[J]. Journal of Sound and Vibration, 1996, 195(5):687-699.
[55]伍先俊, 朱石坚. 模态密度瞬态测试法中指数窗的应用[J]. 振动、测试与诊断, 2006, 26(4):314-317.
WU Xianjun, ZHU Shijian. Application of response window to modal density testing by impact[J]. Journal of Vibration, Measurement & Diagnosis, 2006, 26(4):314-317.
[56]宋继强, 王登峰, 马天飞, 等. 汽车车身复杂子结构模态密度确定方法[J]. 吉林大学学报(工学版), 2009, 39(增刊2):269-373.
SONG Jiqiang, WANG Dengfeng, MA Tianfei, et al. Calculation method of auto body complex sub-structure modal density[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(Sup2):269-373.
[57]冯国松, 王婉秋, 杨松. 蜂窝板统计能量参数的试验获取方法研究[J]. 航天器环境工程, 2009, 26(增刊1):68-72.
FENG Guosong, WANG Wanqiu, YANG Song. Experimental acquisition method for statistical energy parameters of honeycomb panels[J]. Spacecraft Environment Engineering, 2009, 26(Sup1):68-72.
[58]CLARKSON B L. The derivation of modal densities from point impedances[J]. Journal of Sound and Vibration, 1981, 77(4):583-584.
[59]CLARKSON B L, POPE R J. Experimental determination of modal densities and loss factors of flat plates and cylinders[J]. Journal of Sound and Vibration, 1981, 77(4):535-549.
[60]徐士代, 汪凤泉. 基于跨点导纳法识别工程结构模态参数[J]. 噪声与振动控制, 2006, 26(2):1-3.
XU Shidai, WANG Fengquan. To identify engineering structures modal parameters based on a method of cross-point admittance[J]. Noise and Vibration Control, 2006, 26(2):1-3.
[61]RENJI K. Experimental modal densities of honeycomb sandwich panels at high frequencies[J]. Journal of Sound and Vibration, 2000, 237(1):67-79.
[62]赵家宣, 孔宪仁, 王淑楠, 等. 铝蜂窝夹层板模态密度参数实验辨识[J]. 哈尔滨工业大学学报, 2007, 39(5):807-811.
ZHAO Jiaxuan, KONG Xianren, WANG Shunan, et al. Experimental identification of modal density parameters of aluminum honeycomb sandwich panel [J]. Journal of Harbin Institute of Technology, 2007, 39(5):807-811.
[63]CHANG H Z, CHENG W, ZHANG J. On the parameter measurement method in statistical energy analysis of a thin aluminum plate[J]. Journal of Experimental Mechanics, 2012, 27(2):207-213.
[64]YAN H H, PARRETT A. Calculation of statistical energy analysis parameters using finite element analysis[C]//The 2002 International Congress and Exposition on Noise Control Engineering. Dearborn, MI: Inter Noise 02, 2002.
[65]孔宪仁, 张红亮. 基于ERA的统计能量分析参数确定方法[J]. 振动与冲击, 2010, 29(11): 1-5.
KONG Xianren, ZHANG Hongliang. Identification of statistical energy analysis parameters based on ERA[J]. Journal of Vibration and Shock, 2010,29(11):1-5.
[66]CHEN Qiang, FEI Qingguo, LI Yanbin, et al. Prediction of statistical energy analysis parameters in thermal environment[J]. Journal of Spacecraft & Rockets, 2019,56(3):687-694.
[67]张永杰, 肖健, 韦冰峰, 等. 一种新的基于脉冲激励的内损耗因子获取方法[J]. 振动与冲击, 2014, 33(12):161-164.
ZHANG Yongjie, XIAO Jian, WEI Bingfeng, et al. A new method for estimating damping loss factor based on multi-pulse excitation[J]. Journal of Vibration and Shock, 2014, 33(12):161-164.
[68]王献忠, 孙龙泉, 邱忠辉, 等. 部分敷设阻尼材料的水下结构声辐射分析[J]. 振动与冲击, 2012, 31(18):122-127.
WANG Xianzhong, SUN Longquan, QIU Zhonghui, et al. Sound radiation analysis for a submerged structure with a viscoelastic damping layer partially covered[J]. Journal of Vibration and Shock, 2012, 31(18):122-127.
[69]张红亮, 孔宪仁, 刘源, 等. 宽频域的内损耗因子实验辨识方法研究[J]. 振动与冲击, 2013, 32(12):179-184.
ZHANG Hongliang, KONG Xianren, LIU Yuan, et al. Test identification of damping loss factor in a wider frequency range[J]. Journal of Vibration and Shock, 2013, 32(12):179-184.
[70]LIU W B, EWING M S. Experimental and analytical estimation of loss factors by the power input method[J]. American Institute of Aeronautics and Astronautics, 2007, 45(2):477-484.
[71]NORTON M P, GREENHALGH R. On the estimation           of loss factors in lightly damped pipeline systems: some     measurement techniques and their limitations[J].Journal of Sound and Vibration, 1986, 105(3):397-423.
[72]MARTARELLI M, SANTOLINI C, SASSAROLI A. Scanning laser doppler vibrometry for the characterization of the damping loss factor in honeycomb panels[C]//Proceedings of the IMAC XXVII. Orlando, FL, 2009.
[73]宁方华, 张建. 损耗因子测量的Hilbert变换法[J].山东工程学院学报, 2002, 16(1):17-20.
NING Fanghua, ZHANG Jian. Hilbert transform in loss factor measurement[J]. Journal of Shandong Institute of Technology, 2002, 16(1):17-20.
[74]LIANG H S, GUAN C B, CHENG G L. Study on the measurement of structure’s internal loss factor based on Hilbert transform[J]. Noise and Vibration Control, 2006, 26(4):105-107.
[75]YANG Y, HE J S, LI D Q. A noise evaluation method for CSEM in the frequency domain based on wavelet transform and analytic envelope[J]. Chinese Journal of Geophysics, 2018, 61(1):344-357.
[76]BLOSS B C, RAO M D. Estimation of frequency-averaged loss factors by the power injection and the impulse response decay methods[J]. The Journal of the Acoustical Society of America, 2005, 117(1):240-249.
[77]MOELLER M, ALLEN A, SCHILLER N, et al. Loss factor estimation using the impulse response decay method on a stiffened structure[J]. Journal of the Reticuloendothelial Society, 2009, 15(2):87-95.
[78]张红亮, 孔宪仁, 张国威. 利用子空间法识别统计能量分析参数[J]. 工程力学, 2012, 29(1):13-19.
ZHANG Hongliang, KONG Xianren, ZHANG Guowei. Identification of statistical energy analysis parameters using subspace method[J]. Engineering Mechanics, 2012, 29(1):13-19.
[79]李海虹, 王菲. 机床电主轴多结构耦合损耗因子的试验研究[J],振动与冲击, 2018, 37(16):98-103.
LI Haihong, WANG Fei. An experimental study on multi-structural coupling loss factors of machine spindle[J], Journal of Vibration and Shock, 2018, 37(16):98-103.
[80]CACCIOLATI C, GUYADER J L. Measurement of SEA coupling loss factors using point mobilities[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1994, 346(1681):465-475.
[81]MANNING J E. Formulation of SEA parameters using mobility functions[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences Functions, 1994, 346(1681):477-488.
[82]PANKAJ A C, SASTRY S, MURIGENDRAPPA S M. A comparison of different methods for determination of coupling factor and velocity response of coupled plates[J]. Journal of Vibroengineering, 2013, 15(4):1885-1896.
[83]DIJCKMANS A. Vibration transmission across junctions of double walls using the wave approach and Statistical Energy Analysis[J]. Acta Acustica United with Acustica, 2016, 102(3):488-502.
[84]BIES D A, HAMID S. In situ determination of loss and coupling loss factors by the power injection method[J]. Journal of Sound and Vibration, 1980, 70(2):187-204.
[85]LALOR N. The experimental determination of vibrational energy balance in complex structures[C]//Stress and Vibration: Recent Developments in Measurement and Analysis. London:International Society for Optics and Photonics, 1989.
[86]SECGIN A. Numerical determination of statistical energy analysis parameters of directly coupled composite plates using a modal-based approach[J]. Journal of Sound and Vibration, 2013, 332(2):361-377.
[87]PUTRA A, MUNAWIR A, FARID W. Corrected statistical energy analysis model for car interior noise[J]. Advances in Mechanical Engineering, 2015, 7(1):1687-1740.
[88]MANDALE M B, BABU P B, SAWANT S. Statistical energy analysis parameter estimation for different structural junctions of rectangular plates[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(15):2603-2610.
[89]MAXIT L, GUYADER J L. Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, Part 1: theory[J]. Journal of Sound and Vibration, 2001, 239(5):907-930.
[90]THITE A N, MACE B R. Robust estimation of coupling loss factors from finite element analysis[J]. Journal of Sound and Vibration, 2007, 303(3/4/5):814-831.
[91]TOTARO N, DODARD C, GUYADER J L. SEA coupling loss factors of complex vibro-acoustic systems[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 2009, 131(4):1-8.
[92]MACE B R, SHORTER P J. Energy flow models from finite element analysis[J]. Journal of Sound and Vibration, 2000, 233(3):369-389.
[93]陈强, 张鹏, 李彦斌, 等. 基于FEM-PIM计及热效应的统计能量分析[J]. 航空动力学报, 2017, 32(6): 1366-1374.
CHEN Qiang, ZHANG Peng, LI Yanbin, et al. Statistical energy analysis under thermal environment based on FEM-PIM[J]. Journal of Aerospace Power, 2017, 32(6):1366-1374.
[94]MAXIT L, GUYADER J L. Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, Part 2: numerical applications[J]. Journal of Sound and Vibration, 2001, 239(5):931-948.
[95]孔宪仁, 王英诚, 张红亮. 基于DFM/FEM铝蜂窝夹层结构耦合损耗因子预测[J]. 振动与冲击, 2016, 35(1):125-131.
KONG Xianren, WANG Yingcheng, ZHANG Hongliang. Coupling loss honeycomb sandwich structures using DFM /FEM[J]. Journal of Vibration and Shock, 2016, 35(1):125-131.
[96]LYON R H, EICHLER E. Random vibration of connected structure[J]. The Journal of the Acoustical Society of America, 1964, 36(7):1344-1354.
[97]NEWLAND D E. Comment on “Vibration-energy transmission in a three-element structure”[J]. The Journal of the Acoustical Society of America, 1966, 39(4):755.
[98]LIN T R, TAN A C C, YAN C, et al. Vibration of L-shaped plates under a deterministic force or moment excitation: a case of statistical energy analysis application[J]. Journal of Sound and Vibration, 2011, 330(20):4780-4797.
[99]NORTON M P, NELSON F C. Fundamentals of noise and vibration analysis for engineers[J]. The Journal of the Acoustical Society of America, 1990, 88(4):2044.
[100]RENJI K, SHANKER N S. Loss factors of composite honeycomb sandwich panels[J]. Journal of Sound and Vibration, 2002, 250(4):745-761.
[101]刘明治, 高桂芳. 相关激励下的统计能量分析法研究[J]. 力学与实践, 1992, 14(4):35-39.
LIU Mingzhi, GAO Guifang. Statistical energy analysis under correlated excitation[J]. Mechanics and Engineering, 1992, 14(4):35-39.
[102]刘明治. 一般相关激励下保守耦合系统的统计能量分析[J]. 应用力学学报, 1994, 11(4):78-82.
LIU Mingzhi. Statistical energy analysis for conservatively coupled systems under high-frequency wide-bank correlative excitations[J]. Chinese Journal of Applied Mechanics, 1994, 11(4):78-82.
[103]张建, 顾崇衔. 任意激励关系下非保守耦合振子能量分布与功率流的一般特征[J]. 应用力学学报, 1991, 8(1):27-32.
ZHANG Jian, GU Chongxian. General characteristics of power flow and energy distribution between non-conservatively coupled oscillators under general excitations[J]. Chinese Journal of Applied Mechanics, 1991, 8(1):27-32.
[104]张建, 顾崇衔. 相关激励形式下保守和非保守耦合振子的能量分布与功率流[J]. 声学学报, 1993, 18(3):186-196.
ZHANG Jian, GU Chongxian. Power flow between and energy distribution between non-conservatively coupled oscillators under correlative excitations[J]. Acta Acustica, 1993, 18(3):186-196.
[105]张建. 相似耦合系统的统计能量分析[J]. 声学学报, 2002, 27(2):102-107.
ZHANG Jian. Statistical energy analysis of similar coupled systems[J]. Acta Acustica, 2002, 27(2):102-107.
[106]CHOL S, PIERRE C, CASTANIER M P. Statistical energy methods for mid-frequency vibration transmission analysis[C]//Proceedings of the 1997 Noise and Vibration Conference. Traverse City, MI, 1997.
[107]王毅刚, 黄文超. 统计能量分析(SEA)在复杂结构分析中的低频限研究[J]. 结构强度研究, 2005, B04:127-136.
WANG Yigang, HUANG Wenchao. Low frequency limit analysis of statistical energy analysis (SEA) in complex structure[J]. Structural Strength Study, 2005, B04:127-136.
[108]王毅刚, 王佐民, 杨志刚. 复杂结构统计能量分析的低频限研究[J]. 同济大学学报(自然科学版), 2008, 6:812-816.
WANG Yigang, WANG Zuomin, YANG Zhigang. Study of low frequency limit of statistical energy analysis for complex structure[J]. Journal of Tongji University (Natural Science), 2008, 6:812-816.
[109]李冰, 陈克安, 潘凯, 等. 飞机舱内中频噪声的FE-SEA混合法预测及验证[J]. 噪声与振动控制, 2011(4):60-63.
LI Bing, CHEN Ke’an, PAN Kai,et al. Prediction and validation of aircraft cabin noise by hybrid FE-SEA method at mid-frequency range[J]. Noise and Vibration Control, 2011(4):60-63.
[110]秦朝红, 任方, 韩丽, 等. 飞行器典型结构中频分析参数识别及建模技术研究[J]. 强度与环境, 2014, 41(5):38-44.
QIN Zhaohong, REN Fang, HAN Li, et al. Parameter identification and modeling method for mid-frequency environment prediction of typical structure[J]. Structure & Environment Engineering, 2014, 41(5): 38-44.
[111]毛杰, 郝志勇, 孙强, 等. 多物理场耦合激励下的高铁车内中频噪声计算[J]. 浙江大学学报(工学版), 2015, 49(2):315-321.
MAO Jie, HAO Zhiyong, SUN Qiang, et al. High-speed train medium-frequency interior noise calculation under multi-physical-field coupling excitations[J].Journal of Zhejiang University (Engineering Science), 2015, 49(2):315-321.
[112]张永杰, 陈璐, 韦冰峰, 等. 梁板组合结构的中频振动试验与计算分析[J]. 振动与冲击, 2016, 35(13):194-200.
ZHANG Yongjie, CHEN Lu, WEI Bingfeng, et al. Tests and simulation for vibration in mid-frequency domain of a beam-plate built-up structure[J]. Journal of Vibration and Shock, 2016, 35(13):194-200.
[113]YAN Yunju, LI Pengbo, LIN Hugang. Analysis and experimental validation of the middle-frequency vibro-acoustic coupling property for aircraft structural model based on the wave coupling hybrid FE-SEA method[J]. Journal of Sound and Vibration, 2016, 371:227-236.
[114]GAO R X, ZHANG Y H, KENNEDY D. A hybrid boundary element-statistical energy analysis for the mid-frequency vibration of vibro-acoustic systems[J]. Computers & Structures, 2018, 203:34-42.
[115]WU F, CHEN Y J, YAO L Y, et al. The development of hybrid ES-FE-SEA method for mid-frequency vibration analysis of complex built-up structure[J]. Applied Mathematical Modelling, 2018,64:298-319.
[116]ABDULLAH S, MURAT K, ALTAY O. A modal impedance-based statistical energy analysis for vibro-acoustic analysis of complex systems having structural uncertainty[J]. Proceedings of The Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(6):1972-1989.
[117]HAWES D H, LANGLEY R S, BUTLIN T, et al. A hybrid finite element-statistical energy analysis method for impulsive and transient loading[J]. Journal of Sound and Vibration, 2019, 459:1-19.
[118]GAO R X, ZHANG Y H, KENNEDY D. Application of the dynamic condensation approach to the hybrid FE-SEA model of mid-frequency vibration in complex built-up systems[J]. Computers and Structures, 2020, 228:1-7.
[119]MACE B. Statistical energy analysis, energy distribution models and system modes[J]. Journal of Sound and Vibration, 2003, 264(2):391-409.
[120]LANGLEY R S, BROWN A W M. The ensemble statistics of the energy of a random system subjected to harmonic excitation[J]. Journal of Sound and Vibration, 2004, 275(3/4/5):823-846.
[121]LANGLEY R S, BROWN A W M. The ensemble statistics of the band-averaged energy of a random system[J]. Journal of Sound and Vibration, 2004, 275(3/4/5):847-857.
[122]LANGLEY R S, COTONI V. Response variance prediction in the statistical energy analysis of built-up systems[J]. The Journal of the Acoustical Society of America, 2004, 115(2):706-718.
[123]COTONI V, LANGLEY R S, KIDNER M R F. Numerical and experimental validation of variance prediction in the statistical energy analysis of built-up systems[J]. Journal of Sound and Vibration, 2005, 288(3):701-728.
[124]SCHROEDER M R. Frequency-correlation functions of frequency responses in rooms[J]. The Journal of the Acoustical Society of America, 1962, 34(12):1819-1823.
[125]颜松, 盛美萍, 赵颖坤, 等. 耦合质量对非保守耦合系统功率流影响特性研究[J]. 机械科学与技术, 2006, 25(7):824-855.
YAN Song, SHENG Meiping, ZHAO Yingkun, et al. Study of the influence of coupling mass on power flow’s characteristics of non-conservatively coupled systems[J]. Mechanical Science and Technology, 2006, 25(7):824-855.
[126]WATERHOUSE R V. Estimation of monopole power radiated in a reverberation chamber[J]. The Journal of the Acoustical Society of America, 1978, 64(5):1443-1446.
[127]DAVY J L. The relative variance of the transmission function of a reverberation room[J]. Journal of Sound and Vibration, 1981, 77(4):455-479.
[128]DAVY J L. The ensemble variance of random noise in a reverberation room[J]. Journal of Sound and Vibration, 1986, 107(3):361-373.
[129]WEAVER R L. Spectral statistics in elastodynamics[J]. The Journal of the Acoustical Society of America, 1989, 85(3):1005-1013.
[130]DAVY J L. Improvements to formulae for the ensemble relative variance of random noise in a reverberation room[J]. Journal of Sound and Vibration, 1987, 115(1):145-161.
[131]ELLEGAARD C, GUHR T, LINDEMANN K, et al. Spectral statistics of acoustic resonances in aluminum blocks[J]. Physical Review Letters, 1995, 75(8):1546-1549.
[132]ELLEGAARD C, GUHR T, LINDEMANN K, et al. Symmetry breaking and spectral statistics of acoustic resonances in quartz blocks[J]. Physical Review Letters, 1996, 77(24):4918-4921.
[133]BERTELSEN P, ELLEGAARD C, HUGUES E. Distribution of eigen frequencies for vibrating plates[J]. The European Physical Journal B, 2000, 15(1):87-96.
[134]BURKHARDT J, WEAVER R L. Spectral statistics in damped systems[J]. The Journal of the Acoustical Society of America, 1996, 100(1):320-334.
[135]BURKHARDT J, WEAVER R L. The effect of decay rate variability on statistical response predictions in acoustic systems[J]. Journal of Sound and Vibration, 1996, 196(2):147-164.
[136]MANNING J E. Variance and confidence intervals for SEA predictions[C]//SAE Noise and Vibration Conference and Exhibition. Traverse City, MI, 2005.
[137]ZHENG J L, XING J H, LI S M, et al. Statistical analysis of vibrational response of uncertain dynamics structures based on correlated excitations[J]. Journal of Vibration Engineering, 2008, 21(5):429-435.
[138]廖庆斌, 李舜酩, 王晓东, 等. 复杂耦合动力系统振动响应的统计估计方法研究[J]. 振动与冲击, 2011, 30(5):76-82.
LIAO Qingbin, LI Shunming, WANG Xiaodong, et al. Statistical analysis for vibrational response of a complicated coupled dynamical system[J]. Journal of Vibration and Shock, 2011, 30(5):76-82.
[139]ANDRADE L, LANGLEY R S, BUTLIN T,et al. Experimental validation of variance estimation in the statistical energy analysis of a structural-acoustic system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019,233(18): 6448-6459.
[140]LANGLEY R S, BARDELL N S. A review of current analysis capabilities applicable to the high frequency vibration prediction of aerospace structures[J]. The Aeronautical Journal, 1998, 102(1015):287-297.
[141]MARTINEZ R. Foundations of statistical energy analysis in vibroacoustics[J]. The Journal of the Acoustical Society of America, 2016, 140(2):878.
[142]廖庆斌, 李舜酩. 统计能量分析中的响应统计估计及其研究进展[J]. 力学进展,2007(3):337-345.
LIAO Qingbin, LI Shunming. Statistical estimation of response in statistical energy analysis and its research progress[J]. Advances in Mechanics,2007(3):337-345.
[143]LAFONT T, TOTARO N, BOT A L. Review of statistical energy analysis hypotheses in vibroacoustics[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2014, 470(2162):1364-5021.
[144]THANEDAR B D. A simplified model for the prediction of airplane interior noise by the statistical energy analysis (SEA) method[J]. The Journal of the Acoustical Society of America, 1979, 65(Sup1):S98.
[145]TORU Y, MASAHIKO K, YASUYUKI A. Applicability of experimental statistical energy analysis to an engine structure[J]. JSAE review, 2003, 24(3):263-267.
[146]FUNG A K, DAVIS E B. Prediction of airplane aft-cabin noise using statistical energy analysis[J]. The Journal of the Acoustical Society of America, 2005, 118(3):1847.
[147]聂旭涛, 熊飞峤. 运用统计能量分析法预示空空导弹舱内动力学环境[J]. 振动与冲击, 2007, 26(4):140-144.
NIE Xutao, XIONG Feiqiao. Prediction of dynamic environment in air-to-air missile cabin by statistical energy analysis [J].Journal of Vibration and Shock, 2007, 26(4):140-144.
[148]BREMNER P, BLOOR M. Recent developments in statistical energy analysis for aircraft interior noise[J]. The Journal of the Acoustical Society of America, 2002, 112(5):2348. 
[149]赵欣, 丁继锋, 韩增尧, 等. 航天器火工冲击模拟试验及响应预示方法研究综述[J]. 爆炸与冲击, 2016,  36(2):259-268.
ZHAO Xin, DING Jifeng, HAN Zengyao, et al. Review of pyroshock simulation and response prediction methods in spacecraft[J]. Explosion and Shock Waves, 2016, 36(2):259-268.
[150]JOLLY A, COCKBURN J. Structural-acoustic response, noise transmission losses, and interior levels of an aircraft fuselage excited by random pressure fields[R]. Huntsville, AL: Wyle Labs Inc Testing Div, 1968.
[151]HAY J A. Problems of cabin noise estimation for supersonic transports[J]. Journal of Sound and Vibration, 1964, 1(2):113-126.
[152]MILER V R, FAULKNER L L. Prediction of aircraft interior noise using the statistical energy analysis method[J]. Journal of Vibration and Acoustics, 1983, 105(4):512-518.
[153]YOERKIE C A. Helicopter airframe vibration transmission modeling using statistical energy analysis(SEA)[J]. The Journal of the Acoustical Society of America, 1983, 74(Sup1):S69.
[154]LANDMANN A E, TILLEMA H F, MACGREGOR G R. Evaluation of analysis techniques for low frequency interior noise and vibration of commercial aircraft[R]. NASA Contractor Report 181851, 1989.
[155]LANDMANN A E, TILLEMA H F, MACGREGOR G R. Application of analysis techniques for low frequency interior noise and vibration of commercial aircraft[R]. Washington DC: NASA Contractor Report 189555, 1992.
[156]BONILHA M W, HAN F, WADEY B. Application of predictive and experimental SEA to S-92 helicopter sidewall section[C]//6th Aeroacoustics Conference and Exhibit. Lahaina, HI, 2000.
[157]GIUSEPPE P, GIACOMO M, AURELIO L, et al. A statistical energy analysis (SEA) model of a fuselage section for the prediction of the internal sound pressure level (SPL) at cruise flight conditions[J]. Aerospace Science and Technology, 2019, 88:340-349.
[158]宁玮, 张景绘, 王珺. 飞行器仪器舱混响室声环境实验研究和数值模拟[J]. 西安交通大学学报, 2009, 6:99-102.
NING Wei, ZHANG Jinghui, WANG Jun. Acoustic environmental experiment and numerical simulation of apparatus cabin of aircraft in reverberation chamber[J]. Journal of Xi’an Jiaotong University, 2009, 6:99-102.
[159]杨雄伟, 李跃明, 耿谦. 基于混合FE-SEA法的高温环境飞行器宽频声振特性分析[J]. 航空学报, 2011, 10:1851-1859.
YANG Xiongwei, LI Yueming, GENG Qian. Broadband vibro-acoustic response of aircraft in high temperature environment based on hybrid FE-SEA[J]. Journal of Aeronautics, 2011, 10:1851-1859.
[160]杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1):1-11.
YANG Chao, XU Yun, XIE Changchuan. Review of studies on aeroelasticity of hypersonic vehicles[J]. Journal of Aeronautics, 2010, 31(1):1-11.
[161]MARUCCHI P C, CABODI G, QUAGLIOTTI F, et al. Testing and characterization of ISS pressurized modules vs. on-orbit vibro-acoustic environment—lessons learned[J]. Acta Astronautica, 2008, 63(1/2/3/4):310-323.
[162]SHORTER P J, LANGLEY R S. Vibro-acoustic analysis of complex systems[J]. Journal of Sound and Vibration, 2005, 288(3):669-699.
[163]SHORTER P J, LANGLEY R S. On the reciprocity relationship between direct filed radiation and diffuse reverberant loading[J]. The Journal of the Acoustical Society of America, 2005, 117(1):85-95.
[164]SHORTER P J, LANGLEY R S. Modeling structure-borne noise with the hybrid FE-SEA method[C]//6th International Conference on Structural Dynamics. Paris, France, 2005.
[165]LANGLEY R S, COTONI V. Prediction of the ensemble mean and variance of the response of uncertain structures using the hybrid FESEA method[C]//International Conference on Noise and Vibration Engineering. Louvain, Belgium: ISMA2006, 2006.
[166]YAO Deyuan. Statistical energy analysis of nonconservatively coupled systems and its applications to engineering[C]//IUTAM Symposium on Statistical Energy Analysis. Southampton, England,1997.
[167]KANDULA M, MARGASAHAYAM R. Acoustical and flowfield characterization of a scaled tabletop rocket[M]. Washington DC:NASA-20010090338,2001.
[168]CAMPOS E. Prediction of noise from rocket engines[C]//11th AIAA/CEAS Aeroacoustics Conference. Monterey, CA: 2005.
[169]KANDULA M, VU B, LINDSAY H. Near-field acoustical characterization of clustered rocket engines[C]//11th AIAA/CEAS Aeroacoustics Conference. Monterey, CA: 2005.
[170]朱莹, 马琳, 董龙雷. 火箭发动机喷流噪声数值模拟及声振分析[J]. 计算机辅助工程, 2015(4):45-51.
ZHU Ying, MA Lin, DONG Longlei. Jet flow noise numerical simulation and acoustic-vibration analysis of rocket engine[J]. Computer Aided Engineering, 2015(4):45-51.
[171]IADEVAIA M, VAN H B, RIOBBO J. Using statistical energy analysis for shock pulse predictions[C]//Proceedings of ISMA2002. Leuven, Belgium, 2002.
[172]RADCLIFFE C J, HUANG X L. Putting statistics into the statistical energy analysis of automotive vehicles[J]. Journal of Vibration and Acoustics, 1997, 119(4):629.
[173]SUI F, MORON P, ICHCHOU M, et al. Dynamic analysis of an automobile floorpan using a hybrid approach of the finite element method and statistical energy analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(12):2435-2445.
[174]BORELLO G. Statistical energy analysis limits for acoustic radiation car: an alternative approach[J]. The Journal of the Acoustical Society of America, 2008, 123(5):3675.
[175]PIERRE C, CASTANIER M, CHOI S. On developing new statistical energy methods for the analysis of vibration transmission in complex vehicle structures[J]. Mechanics of Structures and Machines, 1997, 25(1):87-101.
[176]MUSSER C T, MANNING J E, PENG G C. Predicting vehicle interior sound with statistical energy analysis[J]. Journal of Sound and Vibration, 2012, 46(12):1541-0161.
[177]CHARPENTIER A, SHORTER P. Modeling airborne interior noise in full vehicles using statistical energy analysis[J]. The Journal of the Acoustical Society of America, 2006, 120(5):3287-3288.
[178]CHEN Shuming, WANG Dengfeng, LI Wei, et al. Vehicle sound package optimization and interior noise control based on statistical energy analysis[C]//3rd Joint International Conference on Modelling and Simulation/3rd International Conference on Information and Computing Science. Wuxi, China. 2010.
[179]焦映厚, 陈照波, 贺滨, 等. 大型客车车身的阻尼减振降噪技术研究[J]. 振动与冲击, 2013, 32(6):122-126.
JIAO Yinghou, CHEN Zhaobo, HE Bin, et al. Vibration and noise damping technique for large bus body[J]. Journal of Vibration and Shock, 2013, 32(6):122-126.
[180]ZHANG Y, MANN J A. Examples of using structural intensity and the force distribution to study vibration plates[J]. Journal of the Acoustical Society of America, 1996, 99(1):354-361.
[181]贺岩松, 张辉, 夏小均, 等. 基于FE-SEA 混合法的车身板件降噪分析[J]. 振动与冲击, 2016, 35(23):234-240.
HE Yansong, ZHANG Hui, XIA Xiaojun, et al. Noise reduction analysis for car body panels based on hybrid FE-SEA method[J]. Journal of Vibration and Shock, 2016, 35(23):234-240.
[182]LEE H R, KIM H Y, JEON J H. Application of global sensitivity analysis to statistical energy analysis: vehicle model development and transmission path contribution[J]. Applied Acoustics, 2019, 146:368-389.
[183]CHEN Shuming, WANG Dengfeng, LIU Bo, et al. Car exterior noise prediction based on statistical energy analysis and semi-infinite fluid method[J]. China Journal of Highway and Transport, 2010, 23(2):111-115.
[184]BORELLO G. Predicting noise transmission in a truck cabin using the statistical energy analysis approach[C]//IUTAM Symposium on Statistical Energy Analysis.  Southampton, England, 1997.
[185]BURKETT C. Truckmaker uses statistical energy analysis to create a quieter truck cab[J]. Journal of Sound and Vibration, 2007, 41(10):6-8.
[186]ZHANG Jie, XIAO Xinbiao, HAN Jian, et al. Characteristics of noise distribution at the ends of the coach and acoustic modal analysis of high-speed train[J]. Journal of Mechanical Engineering, 2014, 50:97-103.
[187]DING Sansan, LI Qiang, TIAN Aiqin, et al. Aerodynamic design on high-speed trains[J]. Acta Mechanica Sinica, 2016, 32(2):215-232.
[188]CHEN Shuming, WANG Dengfeng, LIU Bo, et al. Statistical energy analysis method for car exterior noise prediction[J]. Journal of Mechanical Engineering, 2010, 46(10):88-94.
[189]TALOTTE C. Aerodynamic noise:a critical survey[J]. Journal of Sound and Vibration, 2000, 231(3):549-562.
[190]TALOTTE C, GAUTIER P E, THOMPSON D J, et al. Identification, modeling and reduction potential of railway noise sources: a critical survey[J]. Journal of Sound and Vibration, 2003, 267(3):447-468.
[191]刘加利, 于梦阁, 田爱琴, 等. 基于统计能量分析的高速列车车内气动噪声研究[J]. 机械工程学报,2017, 53(10):136-144.
LIU Jiali, YU Mengge, TIAN Aiqin, et al. Study on the interior aerodynamic noise of the high-speed train based on the statistical energy analysis[J]. Journal of Mechanical Engineering, 2017, 53(10):136-144.
[192]FUREBY C, ALIN N, WIKSTROM N, et al. Large-eddy simulation of high-Reynolds-number wall-bounded flows[J]. American Institute of Aeronautics and Astronautics, 2004, 42(3):457-468.
[193]DIFRANCESCANTONIO P. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration, 1997, 202(4):491-509.
[194]POWELL A. Theory of vortex sound[J]. The Journal of the Acoustical Society of America, 1964, 36(1):177-195.
[195]FARASSAT F, MYERS M K. Extension of Kirchhoff’s formula to radiation from moving surfaces[J]. Journal of Sound and Vibration, 1988, 123(3):451-460.
[196]王毅刚, 张婕, 俞悟周, 等. 基于统计能量法的汽车风噪传播特性分析[J]. 同济大学学报(自然科学版), 2018, 46(12): 1696-1704.
WANG Yigang, ZHANG Jie, YU Wuzhou, et al. Analysis of wind noise propagation characteristics of automobile based on statistical energy analysis[J]. Journal of Tongji University(Natural Science), 2018, 46(12):1696-1704.
[197]唐荣江, 童浙, 李申芳, 等. 重型商用车内高频噪声的预测与分析[J]. 机械设计与制造, 2020(1):205-208.
TANG Rongjiang, TONG Zhe, LI Shenfang, et al. Prediction and analysis of commercial vehicle interior high frequency noise[J]. Machinery Design & Manufacture, 2020(1):205-208.
[198]LIU Q M, THOMPSON D J, XU P P, et al. Investigation of train-induced vibration and noise from a steel-concrete composite railway bridge using a hybrid finite element-statistical energy analysis method[J]. Journal of Sound and Vibration, 2020,471:1-21.
[199]HUANG L Y, RAJU P K. Designing structures for noise and vibration control with statistical energy analysis[J]. The Journal of the Acoustical Society of America, 1999, 105(2):1089.
[200]XIE S L, ZHANG Y H, XIE Q, et al. Identification of high frequency loads using statistical energy analysis method[J]. Mechanical Systems and Signal Processing, 2013, 35(1/2):291-306.
[201]张磊, 曹跃云, 杨自春, 等. 船舶噪声源的传递率矩阵识别方法及试验验证[J]. 振动工程学报, 2013, 26(2):291-297.
ZHANG Lei, CAO Yueyun, YANG Zichun, et al. Transmissibility matrix method for identification of ship noise source and corresponding test verification[J]. Journal of Vibration Engineering, 2013, 26(2):291-297.
[202]李思纯, 宫元彬, 时胜国, 等. 舱段模型频率耦合噪声源的分离量化[J]. 哈尔滨工程大学学报, 2016, 37(3):368-375.
LI Sichun, GONG Yuanbin, SHI Shengguo, et al. Separation and quantification of frequency coupled noise sources of submarine cabin[J]. Journal of Harbin Engineering University, 2016, 37(3):368-375.
[203]MAGRANS F X. Definition and calculation of transmission paths within an SEA framework[J]. Journal of Sound and Vibration, 1993, 165:277-283.
[204]HYNN P, KLINGE P, VUOKSINEN J. Prediction of structure-borne sound transmission in large welded ship structures using statistical energy analysis[J]. Journal of Sound and Vibration, 1995, 180(4): 583-607.
[205]CRAIK R J M. Sound transmission through buildings using statistical energy analysis[M]. London: Gower, 1996.
[206]BOT A L. Entropy in statistical energy analysis[J]. The Journal of the Acoustical Society of America, 2009, 125(3):1473-1478.
[207]高处, 杨德庆. 船舶舱室噪声传递路径分析的声振熵赋权图法[J]. 上海交通大学学报, 2014, 48(4):469-474.
GAO Chu, YANG Deqing. Vibroacoustical entropy weighted graph method for sound transmission path analysis of ship cabin noise[J]. Journal of Shanghai Jiaotong University, 2014, 48(4):469-474.
[208]张文春, 段树林, 邢辉, 等. 基于SEA赋权图的舱室噪声传递路径分析[J]. 振动与冲击, 2017, 36(23):164-169.
ZHANG Wenchun, DUAN Shulin, XING Hui, et al. SEA weighted digraph method for vibro-acoustic energy transmission path analysis in cabins[J]. Journal of Vibration and Shock, 2017, 36(23):164-169.
[209]AVCU M, GNEY A. Computation of dominant energy transmission paths for ship structure using a graph theory algorithm[J]. Ocean Engineering, 2018,161:136-153.
[210]吴晓佳, 温华兵, 吴俊杰, 等. 基于统计能量法的邮轮舱室噪声预报与控制[J]. 噪声与振动控制, 2019, 39(1): 89-93.
WU Xiaojia, WEN Huabing, WU Junjie, et al. Cabin noise prediction and control in cruise ships based on SEA[J]. Noise and Vibration Control, 2019, 39(1):89-93.
[211]王淅铖, 武国勋, 王鼎渠. 基于统计能量法的船舶板架结构简化建模方法研究[J]. 船舶工程, 2019, 41(1):40-47.
WANG Xicheng, WU Guoxun, WANG Dingqu. Research of simplified modeling method for ship grillage structure based on statistical energy analysis[J]. Ship Engineering, 2019, 41(1):40-47.

PDF(1813 KB)

Accesses

Citation

Detail

段落导航
相关文章

/