多跨格构式构架气弹模型设计与风洞试验

李峰1,邹良浩1,陈寅2,梁枢果1

振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 23-31.

PDF(2827 KB)
PDF(2827 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 23-31.
论文

多跨格构式构架气弹模型设计与风洞试验

  • 李峰1,邹良浩1,陈寅2,梁枢果1
作者信息 +

Aeroelastic model design and wind tunnel tests of multi-span lattice frame

  • LI Feng1, ZOU Lianghao1, CHEN Yin2, LIANG Shuguo1
Author information +
文章历史 +

摘要

为了研究复杂多跨格构式构架风致响应特性,通过对比主要气弹模型制作方法的优缺点,以某典型1 000 kV两跨变电构架为背景,采用刚性节段加V型弹簧片的方法设计制作了满足前4阶频率相似比的气弹模型。在此基础上,通过气弹模型风洞试验测试得到了不同风速和不同风向角工况下,结构典型部位的位移和加速度时程,并研究了多跨格构式构架的风振响应特性,最后采用惯性风荷载方法和阵风荷载因子法评估了典型节段的风振系数。结果表明:采用刚性节段加V型弹簧片的方法设计制作的气弹模型能较好满足外形、质量、频率、阻尼比等重要参数的相似关系;风向角对位移均值的影响十分显著,其最不利风向角与相应主轴成15°夹角;顺风向与横风向的加速度响应均方根处于同一数量级,横风向风致振动效应较为明显;该结构垂直于跨向中塔的风振响应以第一阶模态的共振分量为主,边塔基阶模态与高阶模态的共振分量均较大,高阶模态的贡献不可忽略;同一节段的位移风振系数值略大于惯性力风振系数值。该试验结果对多跨格构式构架的抗风设计具有一定的参考意义。

Abstract

In order to study wind-induced response characteristics of complex multi-span lattice frame, through comparing advantages and disadvantages of main aeroelastic model making methods, taking a typical 1 000 kV two-span substation frame as the background, the aeroelastic model satisfying the first 4 orders frequencies’ similarity ratios was designed and made by using the method of rigid segments and V-shaped spring sheets. Then, displacement and acceleration time histories at positions of typical parts of the structure under different wind speeds and wind directions were measured through wind tunnel tests of the aeroelastic model. Wind-induced response characteristics of the multi-span lattice frame were studied. Finally,
gust response factors of typical segments were evaluated by using the inertial wind load method and the gust load factor method. The results showed that the aeroelastic model designed using the method of rigid segments and V-type spring sheets can better satisfy similarity relations of important parameters, such as, shape, mass, frequency and damping ratio; effects of wind direction  on the mean displacement are very significant, and the most unfavorable wind direction is at 15 ° to the corresponding principal axis; root mean square of  acceleration responses in along-wind direction and cross-wind direction are in the same order of magnitude, and the wind-induced  response in crosswind direction is  obvious; the wind-induced  response of the structure perpendicular to the central tower of span direction is dominated by the resonance component of the first-order mode, and resonance components of the fundamental order mode and higher-order modes of the side tower are all larger, contributions of higher-order modes can’t be ignored;
gust response factor  of displacement is slightly larger than that of inertial force of the same segment; the test results can provide a reference for anti-wind design of multi-span lattice frames.

关键词

多跨格构式构架 / 气弹模型 / 风洞试验 / 风振响应 / 风振系数

Key words

multi-span lattice frame / aero-elastic model / wind tunnel test / wind-induced response / gust response factor

引用本文

导出引用
李峰1,邹良浩1,陈寅2,梁枢果1. 多跨格构式构架气弹模型设计与风洞试验[J]. 振动与冲击, 2021, 40(13): 23-31
LI Feng1, ZOU Lianghao1, CHEN Yin2, LIANG Shuguo1. Aeroelastic model design and wind tunnel tests of multi-span lattice frame[J]. Journal of Vibration and Shock, 2021, 40(13): 23-31

参考文献

[1]HOLMES J D. Along-wind response of lattice towers—I. Derivation of expressions for gust response factors [J]. Engineering Structures, 1994, 16(4): 287-292.
[2]HOLMES J D. Along-wind response of lattice towers—II. Aerodynamic damping and deflections [J]. Engineering Structures, 1996, 18(7): 483-488.
[3]HOLMES J D. Along wind response of lattice towers—III. Effective load distributions [J]. Engineering Structures, 1996, 18(7): 489-494.
[4]CALOTESCU I, SOLARI G. Alongwind load effects on free-standing lattice towers [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 155: 182-196.
[5]ZOU L, LIANG S, LI Q S, et al. Investigation of 3-D dynamic wind loads on lattice towers [J]. Wind & Structures, 2008, 11(4): 323-340.
[6]HOLMES J D. Mode shape corrections for dynamic response to wind [J]. Engineering Structures, 1987, 9(3): 210-212.
[7]邹良浩, 李峰, 汤怀强, 等. 基于HFFB试验的结构广义荷载与风振响应分析 [J]. 振动、测试与诊断, 2018(1): 103-110.
ZOU Lianghao, LI Feng, TANG Huaiqiang, et al. Analysis of generalized force and wind-induced responses of structures based on high-frequency force balance wind tunnel tests [J]. Journal of Vibration, Measurement & Diagnosis, 2018(1): 103-110.
[8]MOMOMURA Y, MARUKAWA H, OKAMURA T, et al. Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 72(1): 241-252.
[9]王世村, 孙炳楠, 楼文娟, 等. 单杆输电塔气弹模型风洞试验研究和理论分析 [J]. 浙江大学学报(工学版), 2005(1): 88-92.
WANG Shicun, SUN Bingnan, LOU Wenjuan, et al. Wind tunnel test and theoretical analysis on aeroelastic model of single-rod transmission tower [J]. Journal of Zhejiang University (Engineering Science) , 2005(1): 88-92.
[10]LIN W E, SAVORY E, MCINTYRE R P, et al. The response of an overhead electrical power transmission line to two types of wind forcing [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2012, 100(1): 58-69.
[11]楼文娟, 孙炳楠, 唐锦春. 高耸格构式结构风振数值分析及风洞试验 [J]. 振动工程学报, 1996, 9(3): 108-112.
LOU Wenjuan, SUN Bingnan, TANG Jinchun. Wind tunnel test and numerical computation on wind-induced vibration for tall lattice tower [J]. Journal of Vibration Engineering, 1996, 9(3): 108-112.
[12]程志军, 付国宏, 楼文娟, 等. 高耸格构式塔架风荷载试验研究 [J]. 实验力学, 2000(1): 51-55.
CHENG Zhijun, FU Guohong, LOU Wenjuan, et al. Research for the wind force on high-rise latticed tower [J]. Journal of Experimental Mechanics, 2000(1): 51-55.
[13]邓洪洲, 朱松晔, 陈晓明, 等. 大跨越输电塔线体系气弹模型风洞试验 [J]. 同济大学学报(自然科学版), 2003(2): 132-137.
DENG Hongzhou, ZHU Songye, CHEN Xiaoming, et al. Wind tunnel investigation on model of long span transmission line system [J]. Journal of Tongji University (Natural Science), 2003(2): 132-137.
[14]邓洪洲, 司瑞娟, 胡晓依, 等. 特高压输电塔气弹模型风洞试验研究 [J]. 同济大学学报(自然科学版), 2010, 38(5): 673-678.
DENG Hongzhou, SI Ruijuan, HU Xiaoyi, et al. Wind tunnel test on aeroelastic model of UHV latticed transmission tower [J]. Journal of Tongji University (Natural science) , 2010, 38(5): 673-678.
[15]LIANG S, ZOU L, WANG D, et al. Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system [J]. Engineering Structures, 2015, 85: 63-72.
[16]DENG H Z, XU H J, DUAN C Y, et al. Experimental and numerical study on the responses of a transmission tower to skew incident winds [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 157: 171-188.
[17]XIE Q, CAI Y, XUE S. Wind-induced vibration of UHV transmission tower line system: wind tunnel test on aero-elastic model [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 171: 219-229.
[18]张庆华, 马文勇, 赵龙. 典型窄基输电塔风致响应气弹模型风洞试验 [J]. 振动测试与诊断, 2017, 37(2): 326-331.
ZHANG Qinghua, MA Wenyong, ZHAO Long. Wind-induced responses analysis for the typical transmission tower with narrow base based on an aero-elastic model wind tunnel test [J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(2): 326-331.
[19]邓洪洲, 段成荫, 徐海江. 良态风场与台风风场下输电塔线体系气弹模型风洞试验 [J]. 振动与冲击, 2018, 37(8): 257-262.
DENG Hongzhou, DUAN Chengyin, XU Haijiang. Wind tunnel tests on an aeroelastic model of a transmission tower-line system under normal wind field and typhoon wind field [J]. Journal of Vibration and Shock, 2018, 37(8): 257-262.
[20]赵爽, 晏致涛, 李正良, 等. 1 000 kV苏通大跨越输电塔线体系气弹模型的风洞试验研究 [J]. 中国电机工程学报, 2018, 38(17): 5257-5265.
ZHAO Shuang, YAN Zhitao, LI Zhengliang, et al. Investigation on wind tunnel tests of an aeroelastic model of 1 000 kV Sutong span transmission tower-line system [J]. Proceedings of the Chinese Society for Electrical Engineering, 2018, 38(17): 5257-5265.
[21]李正良, 肖正直, 韩枫, 等. 1 000 kV汉江大跨越特高压输电塔线体系气动弹性模型的设计与风洞试验 [J]. 电网技术, 2008(12): 1-5.
LI Zhengliang, XIAO Zhengzhi, HAN Feng, et al. Aeroelastic model design and wind tunnel tests of 1 000 kV Hanjiang long span transmission line system [J]. Power System Technology, 2008(12): 1-5.
[22]梁政平, 李正良. 特高压输电塔线体系的气动弹性模型设计 [J]. 重庆大学学报(自然科学版), 2009, 32(2): 131-136.
LIANG Zhengping, LI Zhengliang. An aeroelastic model design of ultra-high voltage power transmission line systems [J]. Journal of Chongqing University (Natural Science Edition), 2009, 32(2): 131-136.
[23]李正良, 任坤, 肖正直, 等. 特高压输电塔线体系气弹模型设计与风洞试验 [J]. 空气动力学学报, 2011, 29(1): 102-106.
LI Zhengliang, REN Kun, XIAO Zhengzhi, et al. Aeroelastic model design and wind tunnel tests of UHV transmission line system [J]. Acta Aerodynamica Sinica, 2011, 29(1): 102-106.
[24]潘峰, 童建国, 盛晓红, 等. 1 000 kV大型薄壁钢管变电构架风致振动响应研究 [J]. 工程力学, 2009, 26(10): 203-210.
PAN Feng, TONG Jianguo, SHENG Xiaohong, et al. Wind-induced dynamic response of large thin-walled steel tube frame for
1 000 kV substation [J]. Engineering Mechanics, 2009, 26(10): 203-210.
[25]牛华伟, 孔凯歌, 陈寅, 等. 500 kV全联合变电构架体型系数风洞试验及风振系数取值分析 [J]. 湖南大学学报(自然科学版), 2015, 42(11): 80-87.
NIU Huawei, KONG Kaige, CHEN Yin, et al. 500 kV whole combined subatation framework shape factor of wind tunnel test and dynamic response factor analysis [J]. Journal of Hunan University (Natural Sciences) , 2015, 42(11): 80-87.
[26]沈国辉, 项国通, 邢月龙, 等. 2种风场下格构式圆钢塔的天平测力试验研究 [J]. 浙江大学学报(工学版), 2014, 48(4): 704-710.
SHEN Guohui, XIANG Guotong, XING Yuelong, et al. Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows [J]. Journal of Zhejiang University (Engineering Science) , 2014, 48(4): 704-710.
[27]邓洪洲, 司瑞娟, 段成荫, 等. 输电塔气动力系数和气动导纳风洞试验研究 [J]. 振动与冲击, 2015, 34(3): 188-195.
DENG Hongzhou, SI Ruijuan, DUAN Chengyin, et al. Wind tunnel test for aerodynamic coefficient and aerodynamic admittance of a transmission tower [J]. Journal of Vibration and Shock, 2015, 34(3): 188-195.
[28]SYKES D M. Lattice frames in turbulent airflow [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1981, 7(2): 203-214.
[29]希缪. 风对结构的作用:风工程导论[M]. 上海: 同济大学出版社, 1992.
[30]陈寅, 朱东. 1 000 kV圆钢管变电构架体型系数风洞试验研究[J]. 特种结构, 2019, 36(2): 69-74.
CHEN Yin, ZHU Dong. Research on shape-coefficient of 1 000 kV substation steel pipe frame by wind tunnel tests [J]. Special Structures, 2019, 36(2): 69-74.

PDF(2827 KB)

Accesses

Citation

Detail

段落导航
相关文章

/