循环荷载作用下钢筋混凝土短柱受剪性能尺寸效应机理分析

付李,郑家乐,王登峰

振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 299-305.

PDF(2494 KB)
PDF(2494 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 299-305.
论文

循环荷载作用下钢筋混凝土短柱受剪性能尺寸效应机理分析

  • 付李,郑家乐,王登峰
作者信息 +

Mechanism analysis for size effect on shear performance of RC short columns under cyclic load

  • FU Li, ZHENG Jiale, WANG Dengfeng
Author information +
文章历史 +

摘要

为了研究钢筋混凝土短柱在循环荷载作用下受剪性能尺寸效应产生的机理,应用三维刚体弹簧元法,基于梁-拱模型,对3个不同截面尺寸的钢筋混凝土短柱抗剪作用进行分解,结果表明:应用三维刚体弹簧元法能较好地模拟不同截面尺寸钢筋混凝土短柱在循环荷载下的受剪性能;当达到极限荷载时,随着截面尺寸的增加,以名义剪应力为评判标准的抗剪强度逐渐减小,相比于单调荷载,一次循环后的尺寸效应变化较小,而两次循环(短柱临近破坏)后尺寸效应更加明显,这主要是由于拱模型的抗剪作用急剧下降导致的。

Abstract

Here, in order to study size effect mechanism on RC short column shear performance under cyclic load, using 3-D rigid spring element method and based on beam-arch model, anti-shear actions of RC short columns with 3 different section sizes were decomposed. The results showed that the 3-D rigid spring element method can better simulate shear performance of RC short columns with different section sizes under cyclic load; when the ultimate load is reached, the shear strength defined as nominal shear stress gradually decreases with increase in section sizes; compared with the monotonic load, the size effect varies less after one cycle, while the size effect is more obvious after two cycles during short column close to failure, the main cause is due to anti-shear action of the arch model sharply dropping.

关键词

钢筋混凝土短柱 / 循环荷载 / 尺寸效应 / 梁-拱模型 / 机理分析

Key words

reinforced concrete (RC) short column / cyclic load / size effect / beam-arch model / mechanism analysis

引用本文

导出引用
付李,郑家乐,王登峰. 循环荷载作用下钢筋混凝土短柱受剪性能尺寸效应机理分析[J]. 振动与冲击, 2021, 40(13): 299-305
FU Li, ZHENG Jiale, WANG Dengfeng. Mechanism analysis for size effect on shear performance of RC short columns under cyclic load[J]. Journal of Vibration and Shock, 2021, 40(13): 299-305

参考文献

[1]BAZANT Z P, KIM J K. Size effect in shear failure of longitudinally reinforced beams[J]. Journal of the American Concrete Institute, 1984, 81(5):456-468.
[2]BAZANT Z P. Size effect in blunt fracture: concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4):518-535.
[3]杜修力,袁健,周宏宇,等.钢筋混凝土梁在低周反复荷载作用下受剪性能的尺寸效应试验研究[J].地震工程与工程振动,2011,31(5):30-38.
DU Xiuli, YUAN Jian, ZHOU Hongyu, et al. The experimental study of size effect on shear capacity of reinforced concrete beam under low cyclic loading[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011,31(5): 30-38.
[4]于磊,车轶,宋玉普.大尺寸钢筋混凝土无腹筋梁受剪试验研究[J].土木工程学报,2013,46(1):1-7.
YU Lei, CHE Yi, SONG Yupu. Experimental study on shear strength of large-size reinforced concrete beams without web reinforcement[J]. China Civil Engineering Journal,2013,46(1):1-7.
[5]周胤呈. 基于尺寸效应的有腹筋钢筋混凝土梁的剪切强度研究[D].重庆:重庆交通大学,2017.
[6]李振宝,解咏平,杜修力,等.钢筋混凝土短柱受剪性能尺寸效应研究[J].土木工程学报,2014,47(6):26-33.
LI Zhenbao, XIE Yongping, DU Xiuli, et al. Size effect on shear behavior of reinforced concrete short columns[J]. China Civil Engineering Journal, 2014, 47(6): 26-33.
[7]解咏平,李振宝,杜修力,等.基于桁架-拱模型的钢筋混凝土短柱抗剪承载力尺寸效应分析[J].北京工业大学学报,2014,40(5):701-706.
XIE Yongping,LI Zhenbao,DU Xiuli,et al. Size effect analysis on shear behavior of reinforced concrete short columns based on truss-arch model[J]. Journal of Beijing University of Technology,2014,40(5):701-706.
[8]金浏, 苏晓, 徐海滨, 等. 基于细观模型的含腹筋混凝土梁受剪承载力尺寸效应[J]. 土木与环境工程学报(中英文), 2019, 41(1):83-91.
JIN Liu, SU Xiao, XU Haibin, et al. Meso-scle simulation of size effect in shear capacity of reinforced concrete beams with web reinforcement[J]. Journal of Civil and Environmental Engineering, 2019, 41(1):83-91.
[9]PARK R, PAULAY T. Reinforced concrete structures[M]. New York, NY: John Wiley & Sons; 1975.
[10]KIM W, JEONG J. Decoupling of arch action in shear-critical reinforced concrete beams[J]. ACI Struct J, 2011,108(4):395-403.
[11]YAMAMOTO Y, NAKAMURA H, KURODA I, et al. Analysis of compression failure of concrete by three dimensional rigid body spring model[J]. Doboku Gakkai Ronbunshuu E, 2008, 64(4): 612-630.
[12]GEDIK Y H, NAKAMURA H, YAMAMOTO Y, et al. Analysis of compression failure of concrete by three dimensional rigid body spring model[J]. Cement Concr Compos, 2011,33:978-991.
[13]YAMAMOTO Y, NAKAMURA H, KURODA I, et al. Crack propagation analysis of reinforced concrete wall under cyclic loading using RBSM[J]. European Journal of Environmental and Civil Engineering,2014,18(7):780-792.
[14]BOLANDER J E, Jr, HONG G S. Rigid-body-spring network modeling of prestressed concrete members[J].ACI Structural Journal, 2002, 99(5):595-604.
[15]SUGA M, NAKAMURA H, HIGAI T, et al. Effect of bond properties on the mechanical behavior of RC beam[J]. Proceedings of Japan Concrete Institute, 2001, 23(3): 295-300.
[16]CEB-FIP Model Code 1990 First Draft[S]. Paris, France:CEB, 1990.
[17]FU L, NAKAMURA H, FURUHASHI H, et al. Mechanism of shear strength degradation of a reinforced concrete column subjected to cyclic loading[J]. Structural Concrete, 2016,18(1):177-188.
[18]FU L, NAKAMURA H, YAMAMOTO Y, et al. Numerical investigation of effect of through crack on shear strength degradation of RC column[J]. Proceedings of the Japan Concrete Institute, 2016, 36:865-870.
[19]IWAMOTO T, NAKAMURA H, FU L, et al. An investigation on shear resistant mechanism of RC beam based on beam action and arch action[J]. Doboku Gakkai Ronbunshuu, 2017,73(1):70-81.
[20]Standard specifications for concrete design[S]. Tokyo, Japan: JSCE, 2012.

PDF(2494 KB)

Accesses

Citation

Detail

段落导航
相关文章

/