金属网增强遮弹层抗高速弹体侵彻的数值研究

陈首1,石少卿1,王高胜2,3,李季2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 40-50.

PDF(4493 KB)
PDF(4493 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 40-50.
论文

金属网增强遮弹层抗高速弹体侵彻的数值研究

  • 陈首1,石少卿1,王高胜2,3,李季2
作者信息 +

Numerical study of metal mesh enhanced shielding layer against high velocity projectile penetration

  • CHEN Shou1, SHI Shaoqing1, WANG Gaosheng2,3, LI Ji2
Author information +
文章历史 +

摘要

基于验证的数值模型从弹体侵彻深度、弹坑直径、局部破坏情况和能量变化等方面对金属网增强遮弹层抗高速弹体侵彻的冲击响应进行参数化研究,涉及的参数包括:金属网布置形式、金属丝丝径、金属网孔径和金属网层数。研究表明:在素混凝土遮弹层中加入金属网可以有效降低弹体侵彻深度和剩余速度、减小弹坑直径、改善局部破坏情况、加快弹体初始动能耗散。适当增加单位面积网格密度或金属网体积分数可以进一步提高金属网增强遮弹层的抗侵彻性能,具体措施有:螺旋布置金属网、增加金属丝丝径、减小金属网孔径、增加金属网层数等。最后,基于数值研究结果,提出预测平行布置金属网增强遮弹层弹体侵彻深度的计算公式,该公式拟合精度较高,可为该遮弹层在防护工程中的具体应用提供有益参考。

Abstract

Based on the verified numerical model, impact responses of metal mesh enhanced shielding layer against high-speed projectile penetration were studied parametrically from aspects of projectile penetration depth, crater diameter, local damage situation and energy variation. The involved parameters included layout of metal mesh, diameter of metal wire, aperture of metal mesh and number of metal mesh layers. The study results showed that adding metal mesh into plain concrete shielding layer can effectively reduce projectile’s penetration depth, its residual velocity and crater diameter, improve local damage situation, and speed up projectile’s initial kinetic energy dissipation; appropriately increasing mesh density per unit area or volume fraction of metal mesh can further improve the anti-penetration performance of metal mesh enhanced shielding layer, the specific measures include spiral arrangement of metal mesh, increasing diameter of metal wire, reducing aperture of metal mesh and increasing number of metal mesh layers, etc. Finally, based on the numerical study results, a calculation formula was proposed to predict projectile penetration depth into metal mesh enhanced shielding layers arranged in parallel. It was shown that the formula has higher fitting accuracy; it can provide a useful reference for the specific application of the shielding layer in protective engineering.

关键词

金属网增强遮弹层 / 抗侵彻性能 / 冲击响应 / 防护工程

Key words

metal mesh enhanced shielding layer / anti-penetration performance / impact response / protective engineering

引用本文

导出引用
陈首1,石少卿1,王高胜2,3,李季2. 金属网增强遮弹层抗高速弹体侵彻的数值研究[J]. 振动与冲击, 2021, 40(13): 40-50
CHEN Shou1, SHI Shaoqing1, WANG Gaosheng2,3, LI Ji2. Numerical study of metal mesh enhanced shielding layer against high velocity projectile penetration[J]. Journal of Vibration and Shock, 2021, 40(13): 40-50

参考文献

[1]任辉启,穆朝民,刘瑞朝. 精确制导武器侵彻效应与工程防护[M]. 北京:科学出版社,2016.
[2]闫焕敏,张志刚,葛涛,等. 防护工程中遮弹层的研究进展[J]. 兵器材料科学与工程,2016, 39(1):127-132.
YAN Huanmin, ZHANG Zhigang, GE Tao, et al. Research progress of bursting layer in protection engineering[J]. Ordnance Material Science and Engineering, 2016, 39(1):127-132.
[3]张文华,刘鹏宇,吕毓静. 超高性能混凝土动态力学性能研究进展[J]. 材料导报,2019, 33(10):3257-3271.
ZHANG Wenhua, LIU Pengyu, L Yujing. Dynamic mechanical property of UHPCs: a review[J]. Materials Review, 2019, 33(10):3257-3271.
[4]胡瑞,沈贵松,高杰,等. 高含量混杂纤维混凝土抗爆性能试验研究[J]. 防护工程,2008, 30(6):26-30.
HU Rui, SHEN Guisong, GAO Jie, et al. Experimental study on anti-blast performance of high-content hybrid fiber concrete[J]. Protective Engineering, 2008, 30(6):26-30.
[5]黄华,朱亮,黄敏,等. 不同材料改性混凝土的性能研究及现状分析[J]. 硅酸盐通报,2018, 37(6):1887-1896.
HUANG Hua, ZHU Liang, HUANG Min, et al. Research and analysis on the performance of modified concrete with different materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(6):1887-1896.
[6]王璞,黄真,周岱,等. 碳纤维混杂纤维混凝土抗冲击性能研究[J]. 振动与冲击,2012, 31(12):14-18.
WANG Pu, HUANG Zhen, ZHOU Dai, et al. Impact mechanical properties of concrete reinforced with hybrid carbon fibers[J]. Journal of Vibration and Shock, 2012, 31(12):14-18.
[7]纪冲,龙源,邵鲁中. 钢纤维混凝土遮弹层抗弹丸侵彻效应试验研究与分析[J]. 振动与冲击,2009, 28(12):75-79.
JI Chong, LONG Yuan, SHAO Luzhong. Experimental study and analysis on anti-penetration characteristics of steel fiber reinforced concrete[J]. Journal of Vibration and Shock, 2009, 28(12):75-79.
[8]刘新荣,柯炜,梁宁慧,等. 基于SHPB试验的多尺寸聚丙烯纤维混凝土动态力学性能研究[J]. 材料导报,2018, 32(31):484-489.
LIU Xinrong, KE Wei, LIANG Ninghui, et al. Study on dynamic mesh anical properties of concrete multi size polypropylene fiber based on SHPB test[J]. Materials Review, 2018, 32(31):484-489.
[9]马剑. 钢纤维自密实混凝土动静态力学性能与抗爆、抗侵彻机理研究[D]. 合肥:中国科学技术大学,2020.
[10]LI J, WU C, HAO H, et al. Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion[J]. Materials & Design, 2017, 116:77-91.
[11]王耀华,肖燕妮,毕亚军,等. 钢丝网增强活性粉末混凝土抗侵彻特性[J]. 解放军理工大学学报(自然科学版),2008, 9(1):57-61.
WANG Yaohua, XIAO Yanni, BI Yajun, et al. Anti-penetration performance of reactive powder concrete reinforced with steel-wire-net[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2008, 9(1):57-61.
[12]朱江,赵国藩,李士恩,等. 纤维增强钢丝网混凝土的研究和工程应用[J]. 混凝土,2008(6):42-44.
ZHU Jiang, ZHAO Guofan, LI Shi’en, et al. Research on fiber reinforced ferroconcrete and its application[J]. Concrete, 2008(6):42-44.
[13]KAMAL I M, ELTEHEWY E M. Projectile penetration of reinforced concrete blocks: test and analysis[J]. Theoretical & Applied Fracture Mechanics, 2012, 60(1):31-37.
[14]TENG T L, CHU Y A, CHANG F A, et al. Simulation model of impact on reinforced concrete[J]. Cement and Concrete Research, 2004, 34(11):2067-2077.
[15]HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa(7 ksi) and 140 MPa(20 ksi) unconfined compressive strengths[J]. International Journal of Impact Engineering, 1992, 12(1): 1-7.
[16]LIU J, WU C, CHEN X. Numerical study of ultra-high performance concrete under non-deformable projectile penetration[J]. Construction & Building Materials, 2017, 135:447-458.
[17]袁建虎,唐建,吕振坚,等. 钢丝网高强混凝土抗爆性能试验研究[J]. 兵工学报,2012, 33(3):373-378.
YUAN Jianhu, TANG Jian, L Zhenjian, et al. Experimental study on anti-blast performance of steel-wire-net reinforced concretes[J]. Acta Armamentarii, 2012, 33(3):373-378.
[18]SHROT A, BKER M. Determination of Johnson-Cook parameters from machining simulations[J]. Computational Materials Science, 2012, 52(1):298-304.
[19]HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 78(5):51-56.
[20]KENNEDY R. A review of procedures for the analysis and design of concrete structures to resist missile impact effect[J]. Nuclear Engineering & Design, 1976, 37(2):183-203.

PDF(4493 KB)

Accesses

Citation

Detail

段落导航
相关文章

/