正弦曲边负泊松比蜂窝结构面内冲击性能研究

虞科炯1,2,徐峰祥1,2,华林1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 51-59.

PDF(2216 KB)
PDF(2216 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 51-59.
论文

正弦曲边负泊松比蜂窝结构面内冲击性能研究

  • 虞科炯1,2,徐峰祥1,2,华林1,2
作者信息 +

In plane impact performance of honeycomb structure with sinusoidal curved edge and negative Poisson’s ratio

  • YU Kejiong1, 2, XU Fengxiang1, 2, HUA Lin1, 2
Author information +
文章历史 +

摘要

提出了一种引入正弦函数曲线的负泊松比蜂窝结构,通过改变振幅、胞壁厚度等微结构几何参数,建立了参数化的正弦曲线负泊松比蜂窝结构模型。研究了冲击速度和微结构几何参数对正弦曲线蜂窝结构面内冲击变形模式、动态响应和吸能特性的影响。研究表明:正弦曲线负泊松比蜂窝结构的面内冲击性能主要与其振幅、壁厚以及冲击速度有关。中低速冲击时,振幅越大,胞壁越厚,结构面内变形越均匀。随着冲击速度的提高,增大振幅、壁厚均可一定程度增加冲击端的平台应力。对结构吸能特性的分析表明,振幅较小的正弦曲线负泊松比蜂窝结构具有更强的能量吸收能力,相对于内凹六边形蜂窝结构,能够显著降低峰值冲击力。

Abstract

Here, a negative Poisson’s ratio honeycomb structure with sinusoidal function curve was proposed. By changing amplitude, cell wall thickness and other microstructure geometric parameters, a parametric sinusoidal negative Poisson’s ratio honeycomb structure model was established. Effects of impact velocity and microstructure geometric parameters on in-plane impact deformation mode, dynamic response and energy absorption characteristics of the sinusoidal honeycomb structure were studied. The study results showed that in-plane impact performance of honeycomb structure with sinusoidal negative Poisson’s ratio is mainly related to its amplitude, wall thickness and impact velocity; during impacting with medium-low speed, the larger the amplitude, the thicker the cell wall, the more uniform the deformation in structural plane; with increase in impact velocity, increasing amplitude and wall thickness can increase platform stress at impact end to a certain extent; the sinusoidal negative Poisson honeycomb structure with smaller amplitude has stronger energy absorption capacity, it can significantly reduce peak impact force compared with concave hexagonal honeycomb structure.

关键词

负泊松比(NPR) / 正弦曲线 / 面内冲击 / 微结构参数 / 能量吸收

Key words

negative Poisson’s ratio (NPR) / sinusoidal curve / in-plane impact / microstructure parameter / energy absorption

引用本文

导出引用
虞科炯1,2,徐峰祥1,2,华林1,2. 正弦曲边负泊松比蜂窝结构面内冲击性能研究[J]. 振动与冲击, 2021, 40(13): 51-59
YU Kejiong1, 2, XU Fengxiang1, 2, HUA Lin1, 2. In plane impact performance of honeycomb structure with sinusoidal curved edge and negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2021, 40(13): 51-59

参考文献

[1]任鑫,张相玉,谢亿民.负泊松比材料和结构的研究进展[J].力学学报,2019,51(3):656-687.
REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):656-687.
[2]于靖军,谢岩,裴旭.负泊松比超材料研究进展[J].机械工程学报,2018,54(13):1-14.
YU Jingjun, XIE Yan, PEI Xu.State-of-art of metamaterials with negative Poisson’s ratio[J]. Journal of Mechanical Engineering, 2018,54(13):1-14.
[3]杨呜波,阳霞,李忠明,等.负泊松比材料的结构与性能[J].高分子材料科学与工程,2001(6):15-18.
YANG Mingbo, YANG Xia, LI Zhongming, et al.The structure and properties of the material with negative Possion’s ratio[J]. Polymer Materials
Science & Engineering, 2001(6):15-18.
[4]LAKES R.Foam structures with a negative Poisson’s ratio[J]. Science, 1987, 235(4792):1038-1040.
[5]GIBSON L J, ASHBY M F, SCHAJER G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1982,382(1782):25-42.
[6]LARSEN U D, SIGNUND O, BOUWATA S. Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio[J]. Journal of Microelectromechanical Systems, 1997,6(2):99-106.
[7]GRIMA J N, GATT R, ALDERSON A, et al. On the potential of connected stars as auxetic systems[J]. Molecular Simulation, 2005,31(13):925-935.
[8]WAN H, OHTAKI H, KOTOSAKA S, et al.A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model[J]. European Journal of Mechanics—A/Solids, 2004,23(1):95-106.
[9]GONG X B, HUANG J, SCARPA F, et al. Zero Poisson’s ratio cellular structure for two-dimensional morphing applications [J]. Composite Structures, 2015,134:384-392.
[10]韩会龙,张新春.星形节点周期性蜂窝结构的面内动力学响应特性研究[J].振动与冲击,2017,36(23):223-231.
HAN Huilong, ZHANG Xinchun.In-plane dynamic impact response characteristics of periodic 4-pointstar-shaped honeycomb structures[J]. Journal of Vibration and Shock, 2017,36(23):223-231.
[11]张新春,刘颖,李娜.具有负泊松比效应蜂窝材料的面内冲击动力学性能[J].爆炸与冲击,2012,32(5):475-482.
ZHANG Xinchun, LIU Ying,LI Na.In-plane dynamic crushing of honeycombs with negative Poisson’s ratio effects[J]. Explosion and Shock Waves, 2012,32(5):475-482.
[12]DOLLA W J, FRICKE B A, BECKER B R. Structural and drug diffusion models of conventional and auxetic drug-eluting stents[J]. Medical Devices, 2007,1(1):47-55.
[13]邓小林,刘旺玉.一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J].振动与冲击,2017,36(13):103-109.
DENG Xiaolin, LIU Wangyu.In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2017,36(13):103-109.
[14]RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs: a finite element study[J]. International Journal of Impact Engineering, 2003,28(2):161-182.
[15]崔世堂,王波,张科.负泊松比蜂窝面内动态压缩行为与吸能特性研究[J].应用力学学报,2017,34(5):919-924.
CUI Shitang, WANG Bo, ZHANG Ke.Mechanical behavior and energy absorption of honeycomb with negative Poisson’s ratio under in-plane dynamic compression[J]. Chinese Journal of Applied Mechanics, 2017,34(5):919-924.
[16]GIBSON L J, ASHBY M F. Cellular solids: structure and properties[M].2nd ed.Cambridge: Cambridge University Press, 1997.
[17]文桂林,孔祥正,尹汉锋.泡沫填充夹芯墙多胞结构的耐撞性多目标优化设计[J].振动与冲击,2015,34(5):115-121.
WEN Guilin, KONG Xiangzheng,YIN Hanfeng. Multi-objective crashworthiness optimization design of foam-filled sandwich wall multi-cell structures[J]. Journal of Vibration and Shock, 2015,34(5):115-121.
[18]ZOU Z, REID S R, TAN P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009,36(1):165-176.
[19]马芳武,梁鸿宇,赵颖,等.内凹三角形负泊松比材料的面内冲击动力学性能[J].振动与冲击,2019,38(17):81-87.
MA Fangwu, LIANG Hongyu, ZHAO Ying, et al. In-plane impact dynamic performance of concave triangle material with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2019,38(17):81-87.
[20]KOOISTRA G W, DESHPANDE V S, WADLEY H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium[J]. Acta Materialia, 2004, 52(14):4229-4237.
[21]樊喜刚,尹西岳,陶勇,等.梯度蜂窝面外动态压缩力学行为与吸能特性研究[J].固体力学学报,2015,36(2):114-122.
FAN Xigang, YIN Xiyue, TAO Yong,et al.Mechanical behavior and energy absorption  of  graded  honeycomb  materials  under  out-of-plane dynamic compression[J]. Chinese Journal of Solid Mechanics, 2015,36(2):114-122.
[22]ZAREI H R, KRGER M. Crashworthiness optimization of empty and filled aluminum crash boxes[J]. International Journal of Crashworthiness, 2007,12(3):255-264.

PDF(2216 KB)

Accesses

Citation

Detail

段落导航
相关文章

/