电机在某些参数及工作条件下会出现混沌振荡行为。多电机网络的混沌控制对保证电力传动系统的正常运行有重要意义。在实际生产中,多电机网络由于受到随机噪声及随机负荷等因素影响而具有随机性。因此,在设计控制器时考虑系统的随机性非常有必要。首先以永磁同步电机(permanent magnet synchronous motor,PMSM)为节点,以电机间的耦合为连边,建立随机扰动下复杂拓扑结构的多电机网络模型(Newman-Watts型小世界网络、星型网络)。然后基于李雅普诺夫稳定性理论提出反馈可调节控制方法,对多电机网络的混沌进行控制。最后数值仿真验证了控制方法的可行性和有效性,研究结果对保证电力传动系统正常运行具有指导意义。
Abstract
Under some parameters and working conditions, a motor can have chaotic oscillation behavior. Chaos control of multi-motor network is of great significance to ensure normal operation of electric power transmission system. In practical production, a multi-motor network has randomness due to effects of random noise and random load on it. Therefore, it is necessary to consider the randomness of the system when designing its controller. Here, firstly, taking a permanent magnet synchronous motor (PMSM) as the node and coupling among motors as the connecting edge, the multi-motor network model with different complex topologic structures including Newman-Watts small world network and the star network under random disturbance was established. Then, based on Lyapunov stability theory, a feedback adjustable control method based on stochastic nonlinear system was proposed to control chaos of the multi-motor network. Finally, the feasibility and effectiveness of the proposed control method were verified with numerical simulation. It was shown that the study results can provide a guidance for ensuring the normal operation of electric power transmission systems.
关键词
永磁同步电机 /
反馈可调节 /
小世界网络 /
混沌控制 /
随机非线性系统
{{custom_keyword}} /
Key words
permanent magnet synchronous motor /
feedback adjustable /
small-world network /
chaos control /
stochastic nonlinear system
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]马伟明,王东,程思为,等.高性能电机系统的共性基础科学问题与技术发展前沿[J].中国电机工程学报,2016,36(8):2025-2035.
MA Weiming, WANG Dong, CHENG Siwei, et al. Common basic scientific problems and development of leading-edge technology of high performance motor system[J]. Proceedings of the CSEE,2016,36(8):2025-2035.
[2]邵俊波,王辉,黄守道,等. 一种表贴式永磁同步电机无位置传感器低速控制策略[J].中国电机工程学报,2018,38(5):1534-1541.
SHAO Junbo, WANG Hui, HUANG Shoudao, et al. A position sensorless control strategy of surface-mounted permanent-magnet synchronous motors for low-speed operation[J]. Proceedings of the CSEE,2018,38(5):1534-1541.
[3]李晓华,黄苏融,张琪. 电动汽车用永磁同步电机定子结构固有频率分析[J].中国电机工程学报,2017,37(8):2383-2391.
LI Xiaohua, HUANG Surong, ZHANG Qi. Analysis of natural frequencies of stator structure of permanent magnet synchronous motors for electric vehicles[J]. Proceedings of the CSEE,2017,37(8):2383-2391.
[4]HAICHAO F, BOYANG S, LIZHEN G. A closed-loop I/f vector control for permanent magnetsynchronous motor[C]//2017 9th International Conference on Modelling, Identification and Control (ICMIC). Kunming, China: IEEE, 2017: 965-969.
[5]刘旭东, 李珂, 张奇, 等. 基于非线性扰动观测器的永磁同步电机单环预测控制[J]. 中国电机工程学报, 2018, 38(7): 2153-2162.
LIU Xudong, LI Ke, ZHANG Qi, et al. Single-loop predictive control of permanent magnet synchronous motor based on nonlinear disturbance observer [J]. Chinese Journal of Electrical Engineering, 2018, 38(7): 2153-2162.
[6]麦贤慧,韦笃取,罗晓曙.Newman-Watts型小世界电机网络混沌行为的牵制控制[J].复杂系统与复杂性科学,2017,14(1):96-102.
MAI Xianhui,WEI Duqu,LUO Xiaoshu. Controlling chaos in Newman-Watts small-world motor networks by pinning method[J].
Complex Systems and Complexity Science, 2017,14(1): 96-102.
[7]LUO Xiaoshu, FANG Jinqing, WANG Lihu, et al. A new strategy of chaos control and a unified mechanism for several kinds of chaos control methods[J]. Acta Physica Sinica (Overseas Edition), 1999, 8(12): 895.
[8]VASEGHI B, POURMINA M A, MOBAYEN S. Finite-time chaos synchronization and its application in wireless sensor networks[J]. Transactions of the Institute of Measurement and Control, 2018, 40(13): 3788-3799.
[9]SU K, LI C. Control chaos in fractional-order system via two kinds of intermittent schemes[J]. Optik, 2015, 126(20): 2671-2673.
[10]NI J, LIU L, LIU C, et al. Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 64(2): 151-155.
[11]ZHANG W, XUE L, JIANG X. Global stabilization for a class of stochastic nonlinear systems with SISS-like conditions and time delay[J]. International Journal of Robust and Nonlinear Control, 2018, 28(13): 3909-3926.
[12]朱熀秋,秦英,鞠金涛,等.基于磁链耦合分析的无轴承永磁同步电机通用数学模型[J].振动与冲击,2015,34(17):191-198.
ZHU Yuqiu, QIN Ying, JU Jintao, et al. General mathematical model of bearingless permanent magnet synchronous motor based on flux linkage coupling analysis[J]. Journal of Vibration and Shock, 2015, 34(17): 191-198.
[13]HE R, HAN Q. Dynamics and stability of permanent-magnet synchronous motor[J]. Mathematical Problems in Engineering, 2017(9):1-8.
[14]WEI D Q, LUO X S, ZHANG B. Chaos in complex motor networks induced by Newman-Watts small-world connections[J]. Chinese Physics B, 2011, 20(12): 128903.
[15]李健昌, 韦笃取, 罗晓曙,等. 混沌电机自适应时滞同步控制研究[J]. 振动与冲击, 2014, 33(16):105-108.
LI Jianchang, WEI Duqu, LUO Xiaoshu, et al. Research on adaptive time-delay synchronization control of chaotic motor [J]. Journal of Vibration and Shock, 2014, 33 (16): 105-108.
[16]LIU L, XIE X J. State feedback stabilization for stochastic feedforward nonlinear systems with time-varying delay[J]. Automatica, 2013, 49(4): 936-942.
[17]曲子扬. 随机非线性系统自适应神经网络控制及其在电机控制中的应用[D]. 青岛:青岛大学, 2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}