从固体火箭发动机声不稳定燃烧的声学特性出发,以声学激励作为扰动并提供能量,从声学响应角度评估发动机的稳定性,建立了探究固体火箭发动机声能共振规律的试验方法并搭建了试验系统,对于不同发动机结构开展了试验,结果表明试验系统可以表征声不稳定燃烧的声学特性;不同前封头结构声腔的各阶振荡频率基本相同,对于第一阶压力振荡,带有凹腔的椭球形前封头声腔稳定性最低。对于第二、三阶压力振荡,椭球形前封头声腔稳定性最高;潜入空腔体积越大,各阶压力振荡频率越低,声腔稳定性越差。传声特性分析结果表明,潜入空腔长度增加导致出口声功率透射系数减小,稳定性降低。
Abstract
Based on acoustic characteristics of acoustic unstable combustion of solid rocket engine, acoustic excitation was taken as the disturbance to provide energy, the test method to explore the acoustic energy resonance law of solid rocket engine was established and the test system was built. Tests were conducted for different engine structures. The results showed that the test system can characterize acoustic characteristics of acoustic unstable combustion; oscillation frequencies of different front heads’ acoustic cavities are basically the same,
for the first-order pressure oscillation, the ellipsoidal front head acoustic cavity with a cavity has the lowest stability, for the second and third order pressure oscillations, the ellipsoidal front head has the highest acoustic cavity stability; the larger the volume of submerged cavity, the lower the each order pressure oscillation frequency and the worse the acoustic vibration stability. The analysis results of sound transmission characteristics showed that increase in submerged cavity length causes decrease in transmission coefficient of outlet sound power and stability.
关键词
固体火箭发动机 /
声不稳定燃烧 /
声学特性 /
前封头结构 /
潜入空腔
{{custom_keyword}} /
Key words
solid rocket engine /
acoustic unstable combustion /
acoustic characteristics /
front head structure /
submerged cavity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]王宁飞,张峤,李军伟,等.固体火箭发动机不稳定燃烧研究进展[J].航空动力学报,2011(6):213-222.
WANG Ningfei, ZHANG Qian, LI Junwei, et al. Progress of investigation on combustion instability of solid rocket motors[J]. Journal of Aerospace Power,2011(6):213-222.
[2]刘佩进,何国强.固体火箭发动机燃烧不稳定及控制技术[M].西安:西北工业大学出版社,2014.
[3]谢蔚民.固体火箭发动机不稳定燃烧[M].西安:西北工业大学出版社,1984.
[4]陈晓龙,何国强,刘佩进,等.固体火箭发动机燃烧不稳定的影响因素分析和最新研究进展[J].固体火箭技术,2009(6):14-19.
CHEN Xiaolong, HE Guoqiang, LIU Peijin, et al. Analysis of influencing factors of combustion instability in SRM and current progress[J]. Journal of Solid Rocket Technology, 2009(6):14-19.
[5]张翔宇,甘晓松,高波,等. 固体火箭发动机火箭橇过载模拟试验方法[J]. 固体火箭技术,2016,39(6): 751-754.
ZHANG Xiangyu, GAN Xiaosong, GAO Bo, et al. Rocket sled acceleration experiment method of SRM [J]. Journal of Solid Rocket Technology, 2016, 39(6): 751-754.
[6]苏万兴.大长径比固体火箭发动机不稳定燃烧预示及抑制方法研究[D].北京:北京理工大学,2015.
[7]苏万兴,李要建,陈升泽,等. 潜入式喷管对固体火箭发动机工作稳定性影响[J]. 推进技术,2016,37(8): 1529-1533.
SU Wanxing, LI Yaojian, CHEN Shengze, et al. Effects of submerged nozzle on stability of solid rocket motor[J]. Journal of Propulsion Technology, 2016, 37(8): 1529-1533.
[8]陈晓龙,何国强,刘佩进,等. 潜入式喷管对燃烧室中压力振荡的影响[J]. 固体火箭技术,2010,33(3): 252-269.
CHEN Xiaolong, HE Guoqiang, LIU Peijin, et al. Effect of submerged nozzle on pressure oscillation in chamber[J]. Journal of Solid Rocket Technology, 2010, 33(3): 252-269.
[9]ANTHOINE J, BUCHLIN J M, HIRSCHBERG A. Effect of nozzle cavity on resonance in large SRM: theoretical modeling[J]. Journal of Propulsion and Power, 2002, 18(2): 304-311.
[10]PREVOST M. Thrust oscillations in reduced scale solid rocket motors, part I: experimental investigations[R]. AIAA 2005-4003.
[11]DUNLAP R, BROWN R S. Exploratory experiments on acoustic oscillations driven by periodic vortex shedding[J]. AIAA Journal, 1981, 19(3):408-409.
[12]STUBOS A K, BENECCI C. Aerodynamically generated acoustic resonance in a pipe with annular flow restrictors[J]. Journal of Fluids and Structures, 1999, 13:755-778.
[13]张翔宇,何国强,刘佩进.固体火箭发动机转角涡脱落分类[J].航空动力学报,2014,29(8):2003-2011.
ZHANG Xiangyu, HE Guoqiang, LIU Peijin. Classification of corner vortex shedding in solid rocket motor[J]. Journal of Aerospace
Power,2014,29(8):2003-2011.
[14]张翔宇,何国强,刘佩进.轴对称后向台阶不稳定流动及压强振荡数值研究[J].固体火箭技术,2012(2):171-176.
ZHANG Xiangyu, HE Guoqiang, LIU Peijin. Numerical study on unsteady backward-facing step flow and pressure oscillations[J]. Journal of Solid Rocket Technology, 2012(2):171-176.
[15]苏万兴,王宁飞,李要建,等. 空腔位置及结构对脉冲压力振荡的影响[J]. 固体火箭技术, 2015,38(6): 811-816.
SU Wanxing, WANG Ningfei, LI Yaojian, et al. Effects of cavity position and structure on pulsed pressure oscillations[J]. Journal of Solid Rocket Technology, 2015, 38(6): 811-816.
[16]闫宝祥,曾峦,钟涛. 固体火箭发动机燃烧室声场特性分析方法研究[J]. 弹箭与制导学报,2005,25(3): 512-515.
YAN Baoxiang, ZENG Luan, ZHONG Tao. Study of acoustic field character of solid rocket motor[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005,25(3): 512-515.
[17]BLOMSHIELD F S.Lessons learned in solid rocket combustion instability[R]. AIAA 2007-5803.
[18]张峤,李军伟,苏万兴,等.头部空腔对固体火箭发动机压强振荡抑制作用的数值研究[J].固体火箭技术,2012,35(1): 34-41.
ZHANG Qian, LI Junwei, SU Wanxing, et al. Numerical analysis on effect of head cavity on resonance damping characteristics in solid rocket motors[J]. Journal of Solid Rocket Technology,2012,35(1): 34-41.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}