[1]ROBINSON C. Phase plane analysis using the Poincaré map[J]. Nonlinear Analysis, 1985, 9(11): 1159-1164.
[2]MCDONOUGH P V, NOONAN J P, HALL G R. A new chaos detector[J]. Computers Elect Engng, 1995, 21(6): 417-431.
[3]廖明,张文明,方湄,等. 时间序列分形特征的判别[J]. 北京科技大学学报,1998,20(5):412-416.
LIAO Ming, ZHANG Wenming, FANG Mei, et al. Discrimination of fractal characteristics of time series[J]. Journal of University of Science and Technology Beijing, 1998, 20(5): 412-416.
[4]任辉,裴承鸣. 基于LVQ神经网络的混沌时间序列分类识别[J]. 机械科学与技术,2001,20(6):797.
REN Hui, PEI Chengming. Classification and recognition of chaotic time series based on LVQ neural network[J]. Mechanical Science and Technology for Aerospace Engineering, 2001, 20(6): 797.
[5]江亚东,吴竹青,陈因颀,等. 一种基于小波网络的混沌时间序列判定[J]. 北京科技大学学报,2002,24(3):295-298.
JIANG Yadong, WU Zhuqing, CHEN Yinqi, et al. Chaos time series determination based on wavelet network[J].
Journal of University of Science and Technology Beijing, 2002, 24(3): 295-298.
[6]XIE H, WANG Z, HUANG H. Identification determinism in time series based on symplectic geometry spectra[J]. Physics Letters A, 2005, 342(1): 156-161.
[7]席剑辉,魏茹,韩敏. EKF在多变量混沌序列辨识中的应用[J]. 系统仿真学报,2006,18(9):2525-2529.
XI Jianhui, WEI Ru, HAN Min. Application of EKF on identification of multivariate chaotic time series[J]. Journal of System Simulation, 2006, 18(9): 2525-2529.
[8]RAWAT W, WANG Z. Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Computation, 2017, 29(9): 2352-2449.
[9]FUKUSHIMA K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202.
[10]PACKARD N H, CRUTCHFIELD J P, FARMER J D, et al. Geometry from a time series[J]. Physical Review Letters, 1980, 45(9): 712-715.
[11]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25. New York: Curran Associates, Inc., 2012.
[12]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[13]KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//International Conference on Learning Representations. Ithaca, NY: ICLR, 2015.
[14]FRASER A M, SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A: General Physics, 1986, 33(2): 1134-1140.
[15]刘树勇,位秀雷,王基,等. 基于双势阱系统的混沌振动研究[J]. 振动与冲击,2017,36(24):23-29.
LIU Shuyong, WEI Xiulei, WANG Ji, et al. Chaotic vibration study based on two-well potential theory[J]. Journal of Vibration and Shock, 2017, 36(24): 23-29.