深度卷积神经网络在混沌振动识别中的应用研究

唐宇思1,王伟豪1,崔汉国1,刘树勇1,柴凯2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 9-15.

PDF(1369 KB)
PDF(1369 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (13) : 9-15.
论文

深度卷积神经网络在混沌振动识别中的应用研究

  • 唐宇思1,王伟豪1,崔汉国1,刘树勇1,柴凯2
作者信息 +

Application of deep convolution neural network in chaotic vibration identification

  • TANG Yusi1, WANG Weihao1, CUI Hanguo1, LIU Shuyong1, CHAI Kai2
Author information +
文章历史 +

摘要

针对混沌振动信号识别中,混沌特征指数计算量大、运算耗时长,难以满足实时性的要求,提出一种基于深度卷积神经网络的智能混沌识别方法。首先通过相空间重构技术,得到不同振动信号的吸引子图;在此基础上,优化设计了经典网络模型AlexNet的结构参数并进行训练;最后将改进后的模型用于混沌信号的智能识别。仿真和实测信号的结果表明,该方法是可行的,为混沌在线识别提供了有益参考。

Abstract

In recognition of chaotic vibration signals, the calculation amount of chaotic characteristic index is large and time-consuming, so it is difficult to meet the real-time requirements. Here, an intelligent chaotic recognition method based on deep convolution neural network was proposed. Firstly, attractor graphs of different vibration signals were obtained using the phase space reconstruction technique. Then, structural parameters of the classic network model AlexNet were optimized and trained. Finally, the improved model was applied in intelligent recognition of chaotic signals. The results of simulated and actually measured signals showed that the proposed method is feasible, it can provide a useful reference for on-line chaos recognition.

关键词

深度卷积神经网络 / 混沌振动 / 信号识别

Key words

deep convolution neural network / chaotic vibration / signal recognition

引用本文

导出引用
唐宇思1,王伟豪1,崔汉国1,刘树勇1,柴凯2. 深度卷积神经网络在混沌振动识别中的应用研究[J]. 振动与冲击, 2021, 40(13): 9-15
TANG Yusi1, WANG Weihao1, CUI Hanguo1, LIU Shuyong1, CHAI Kai2. Application of deep convolution neural network in chaotic vibration identification[J]. Journal of Vibration and Shock, 2021, 40(13): 9-15

参考文献

[1]ROBINSON C. Phase plane analysis using the Poincaré map[J]. Nonlinear Analysis, 1985, 9(11): 1159-1164.
[2]MCDONOUGH P V, NOONAN J P, HALL G R. A new chaos detector[J]. Computers Elect Engng, 1995, 21(6): 417-431.
[3]廖明,张文明,方湄,等. 时间序列分形特征的判别[J]. 北京科技大学学报,1998,20(5):412-416.
LIAO Ming, ZHANG Wenming, FANG Mei, et al. Discrimination of fractal characteristics of time series[J]. Journal of University of Science and Technology Beijing, 1998, 20(5): 412-416.
[4]任辉,裴承鸣. 基于LVQ神经网络的混沌时间序列分类识别[J]. 机械科学与技术,2001,20(6):797.

REN Hui, PEI Chengming. Classification and recognition of chaotic time series based on LVQ neural network[J]. Mechanical Science and Technology for Aerospace Engineering, 2001, 20(6): 797.
[5]江亚东,吴竹青,陈因颀,等. 一种基于小波网络的混沌时间序列判定[J]. 北京科技大学学报,2002,24(3):295-298.
JIANG Yadong, WU Zhuqing, CHEN Yinqi, et al. Chaos time series determination based on wavelet network[J].
Journal of University of Science and Technology Beijing, 2002, 24(3): 295-298.
[6]XIE H, WANG Z, HUANG H. Identification determinism in time series based on symplectic geometry spectra[J]. Physics Letters A, 2005, 342(1): 156-161.
[7]席剑辉,魏茹,韩敏. EKF在多变量混沌序列辨识中的应用[J]. 系统仿真学报,2006,18(9):2525-2529.
XI Jianhui, WEI Ru, HAN Min. Application of EKF on identification of multivariate chaotic time series[J]. Journal of System Simulation, 2006, 18(9): 2525-2529.
[8]RAWAT W, WANG Z. Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Computation, 2017, 29(9): 2352-2449.
[9]FUKUSHIMA K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202.
[10]PACKARD N H, CRUTCHFIELD J P, FARMER J D, et al. Geometry from a time series[J]. Physical Review Letters, 1980, 45(9): 712-715.
[11]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25. New York: Curran Associates, Inc., 2012.
[12]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[13]KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//International Conference on Learning Representations. Ithaca, NY: ICLR, 2015.
[14]FRASER A M, SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A: General Physics, 1986, 33(2): 1134-1140.
[15]刘树勇,位秀雷,王基,等. 基于双势阱系统的混沌振动研究[J]. 振动与冲击,2017,36(24):23-29.
LIU Shuyong, WEI Xiulei, WANG Ji, et al. Chaotic vibration study based on two-well potential theory[J]. Journal of Vibration and Shock, 2017, 36(24): 23-29.

PDF(1369 KB)

Accesses

Citation

Detail

段落导航
相关文章

/