基于有限时间函数投影的电力系统混沌控制

王聪,张宏立,马萍

振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 125-131.

PDF(1780 KB)
PDF(1780 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 125-131.
论文

基于有限时间函数投影的电力系统混沌控制

  • 王聪,张宏立,马萍
作者信息 +

Finite-time function projective synchronization control method for a chaotic power system

  • WANG Cong,ZHANG Hongli,MA Ping
Author information +
文章历史 +

摘要

电力系统作为复杂的非线性系统,其混沌振荡会表现为随机的、突发性的或情节严重的机电振荡,会伴随着非周期现象出现,将导致电力系统大区域和大面积的停电事故,严重威胁电网的安全稳定运行。为了有效地抑制电力系统的混沌行为,并充分考虑控制方法在实际工程中的应用价值,基于有限时间理论和函数投影同步理论,提出了一种有限时间函数投影同步控制的电力系统混沌控制方法。该方法借鉴混沌同步思想,通过将混沌电力系统与理想状态电力系统在有限时间内实现完全同步,间接地实现电力系统的混沌控制。推导了稳定性定理的数学证明,并进行了相应的数值模拟来验证该方法在电力系统混沌控制中的有效性。理论及仿真结果表明,该方法可以有效地使混沌电力系统在有限时间内实现稳定控制,且对外部干扰具有强鲁棒性。

Abstract

As a complex nonlinear system, the power system’s chaotic oscillations appear as random, sudden or severe electromechanical coupling oscillations, accompanied by non-periodic phenomena, which will lead to power outages in large areas and large districts.These chaotic oscillations seriously threatens the safe and stable operation of the power grid.In order to effectively suppress the chaotic behavior of the power system, and fully exert the effect of the control method in practical engineering, a chaotic control method for the power system with finite time function projection was proposed based on the finite time theory and function projection synchronization theory.The method could achieve complete synchronization between the chaotic power system and the ideal state power system in a limited time by drawing on the idea of chaotic synchronization, which means the method can indirectly achieve the chaos control of the power system.The mathematical proof of the system stability was derived, and then the corresponding numerical simulation was performed to validate the effectiveness of the method in the chaos control of the power system.The theoretical and simulation results show that the method can effectively enable the chaotic power system to achieve stable control within a limited time, and it also has strong robustness to external interference.

关键词

电力系统 / 混沌控制 / 有限时间 / 函数投影

Key words

power system / chaos control / finite time / function projection

引用本文

导出引用
王聪,张宏立,马萍. 基于有限时间函数投影的电力系统混沌控制[J]. 振动与冲击, 2021, 40(14): 125-131
WANG Cong,ZHANG Hongli,MA Ping. Finite-time function projective synchronization control method for a chaotic power system[J]. Journal of Vibration and Shock, 2021, 40(14): 125-131

参考文献

[1]倪骏康,刘崇新,庞霞.电力系统混沌振荡的等效快速终端模糊滑模控制[J].物理学报, 2013,62(19): 107-113.
NI Junkang, LIU Chongxin, PANG Xia.Fuzzy fast terminal sliding mode controller using an equivalent control for chaotic oscillation in power system[J].Acta Physica Sinica, 2013,62(19): 107-113.
[2]江世明,曾喆昭,陈开义.互联电力系统混沌控制的新型滑模控制方法[J].控制工程, 2017,24(5): 978-983.
JIANG Shiming, ZENG Zhezhao, CHEN Kaiyi.A new sliding mode control method of chaos control for interconnected power systems[J].Control Engineering of China, 2017,24(5): 978-983.
[3]闵富红,马汉媛,王耀达.含功率扰动电力系统混沌振荡的动态滑模控制[J].通信学报, 2019,40(1): 119-129.
MIN Fuhong, MA Hanyuan, WANG Yaoda.Surface sliding mode controller for chaotic oscillation in power system with power disturbance[J].Journal on Communications, 2019,40(1): 119-129.
[4]LUO X S.Passivity-based adaptive control of chaotic oscillations in power system[J].Chaos, Solitons & Fractals, 2007,31(3): 665-671.
[5]NI J K, LIU L, LIU C X, et al.Chaos suppression for a four-dimensional fundamental power system model using adaptive feedback control[J].Transactions of the Institute of Measurement and Control, 2017,39(2): 194-207.
[6]闵富红,王耀达,窦一平.含励磁环节的分数阶电力系统混沌振荡分析与控制[J].电子与信息学报, 2017,39(8): 1993-1999.
MIN Fuhong, WANG Yaoda, DOU Yiping.Analysis and control of chaotic oscillation in fractional-order power system with excitation model[J].Journal of Electronics & Information Technology, 2017,39(8): 1993-1999.
[7]RAJAGOPAL K, KARTHIKEYAN A, DURAISAMY P, et al.Bifurcation, chaos and its control in a fractional order power system model with uncertainties[J].Asian Journal of Control, 2019,21(1): 184-193.
[8]KARTHIKEYAN A, RAJAGOPAL K.Chaos control in fractional order smart grid with adaptive sliding mode control and genetically optimized PID control and its FPGA implementation[J].Complexity, 2017,2017: 1-18.
[9]MIN F, WANG Y, PENG G, et al.Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation[J].AIP Advances, 2016,6(8): 085214.
[10]NI J K, LIU L, LIU C X, et al.Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system[J].IEEE Transactions on Circuits and Systems II: Express Briefs, 2016,64(2): 151-155.
[11]NI J K, LIU L, LIU C X, et al.Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system[J].Nonlinear Dynamics, 2016,86(1): 401-420.
[12]赵辉,袁大壮,王红君,等.电力系统有限时间稳定控制策略[J].控制与决策, 2018,33(12): 2283-2288.
ZHAO Hui, YUAN Dazhuang, WANG Hongjun, et al.Finite time stability control strategy for power system[J].Control and Decision, 2018,33(12): 2283-2288.
[13]ZHAO H, MA Y J, LIU S J, et al.Controlling chaos in power system based on finite-time stability theory[J].Institute of Physics, 2011,20(12): 120501.
[14]刘利花,韦笃取,张波.Watts-Strogatz型小世界发电机网络混沌振荡的有限时间混合控制[J].振动与冲击, 2019,38(16): 77-82.
LIU Lihua, WEI Duqu, ZHANG Bo.Finite-time hybrid chaos control in generator networks with Watts-Strogatz small-world topology[J].Journal of Vibration and Shock, 2019,38(16): 77-82.
[15]DU H Y, ZENG Q S, WANG C H.Function projective synchronization in coupled chaotic systems[J].Nonlinear Analysis:  Real World Applications, 2010,11(2): 705-712.
[16]杜洪越.混沌函数投影同步理论及其在保密通信中的应用[M].哈尔滨:黑龙江大学出版社, 2012.
[17]AGHABABA M P, AGHABABA H P.Chaos suppression of rotational machine systems via finite-time control method[J].Nonlinear Dynamics, 2012,69(4): 1881-1888.
[18]AJJARAPU V, LEE B.Bifurcation theory and its application to nonlinear dynamical phenomena in electrical power system[J].IEEE Transactions on Power Systems, 1992,7(1): 312-319.
[19]DOBSON I, CHIANG H D, THORP J S, et al.A model of voltage collapse in electric power systems[C]// Proceedings of the 27th IEEE Conference on Decision and Control.Austin: IEEE, 1988.
 

PDF(1780 KB)

Accesses

Citation

Detail

段落导航
相关文章

/