含噪多频信号频率估计算法

陈鹏,刘春华,苏欣,涂亚庆,赵少美

振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 138-143.

PDF(907 KB)
PDF(907 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 138-143.
论文

含噪多频信号频率估计算法

  • 陈鹏1,2,刘春华2,苏欣2,涂亚庆3,赵少美2
作者信息 +

Frequency estimation algorithm for multi-tone sinusoidal signals with noises

  • CHEN Peng1,2,LIU Chunhua2,SU Xin2,TU Yaqing3,ZHAO Shaomei2
Author information +
文章历史 +

摘要

为抑制多频信号中非待估计频率分量频谱泄漏对频率估计的影响,提出一种新的频率估计算法。利用快速傅里叶变换(FFT)算法对采样信号进行预处理,得到每个频率分量的频谱索引,从而得到各频率分量粗略的幅值和初相位估计值;采用频率搬移策略滤除多频信号中的非待估计频率分量,得到降频信号;对降频信号进行频谱分析,并经迭代计算得到各频率分量信号精确的频率、幅值和初相位估计值。在无噪声、不同信噪比等条件下进行了仿真实验,结果表明,所提算法具有良好的频率估计性能,有效抑制了多频信号中频谱泄漏的影响,提高了频率估计精度,优于现有优秀算法。

Abstract

To suppress the spectrum leakage influence of non-estimated frequency components of a multi-tone signal, a new frequency estimation algorithm was proposed.Firstly, the sampled signal was preprocessed by fast Fourier transform (FFT) algorithm to get the spectrum index of each frequency component, and the coarse estimation values of the amplitude and initial phase of each frequency component were obtained sequentially.Then, the non-estimated frequency components of the multi-tone single were filtered by afrequency shift strategy to obtain a down frequency signal.Finally, the down frequency signal was processed by spectrum analysis, and the more accurate estimation values of frequency, amplitude and initial phase estimates of each frequency component were achieved with an iterative procedure.Moreover, simulation experiments were carried out in different conditions, such as no noise, different signal to noise ratio, etc.The simulation results indicate that the proposed algorithm has a good frequency estimation performanceand improves the frequency estimation accuracy , which effectively suppresses the spectrum leakage influence of the multi-tone signal and is superior to the existing excellent algorithms.

关键词

频率估计 / 频谱泄漏 / 频率搬移策略 / 多频信号

Key words

frequency estimation / spectrum leakage / frequency shift strategy / multi-tone signal

引用本文

导出引用
陈鹏,刘春华,苏欣,涂亚庆,赵少美. 含噪多频信号频率估计算法[J]. 振动与冲击, 2021, 40(14): 138-143
CHEN Peng,LIU Chunhua,SU Xin,TU Yaqing,ZHAO Shaomei. Frequency estimation algorithm for multi-tone sinusoidal signals with noises[J]. Journal of Vibration and Shock, 2021, 40(14): 138-143

参考文献

[1]CHANDRASEKHAR K, HAMSAPRIYE, LAKSHMEESHA V K.Analysis of pisarenko harmonic decomposition-based subNyquist rate spectrum sensing for broadband cognitive radio[J].Defence Science Journal, 2017,67(1): 80-87.
[2]陈鹏,涂亚庆,刘言,等.相减策略的实复转换式参数估计算法[J].振动与冲击, 2020,39(21): 211-216.
CHEN Peng, TU Yaqing, LIU Yan, et al.Real-complex conversion parametric estimation algorithm based on subtraction strategy[J].Journal of Vibration and Shock, 2020,39(21): 211-216.
[3]WEN H, ZHANG J H, MENG Z, et al.Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window[J].IEEE Transactions on Industrial Informatics, 2017,11(1): 16-26.
[4]SO H C, CHAN Y T.Short-time frequency estimation of a real sinusoid[J].IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2005,88(9): 2455-2459.
[5]KAY S M.Fundamentals of statistical signal processing, volume III (paperback)[J].Detection Theory, 1993,37(4): 465-466.
[6]STOICA P, ARYE N.MUSIC, maximum likelihood, and Cramer-Rao bound[J].IEEE Transactions on Acoustics, Speech and Signal Processing, 1989,37(5): 720-741.
[7]陈鹏, 涂亚庆, 沈艳林,等.实复转换式衰减信号参数估计算法[J].振动与冲击, 2020,38(14): 53-58.
CHEN Peng, TU Yaqing, SHEN Yanlin, et al.Real-to-complex-transformation parameter estimation algorithm for damped real-value sinusoidal signal[J].Journal of Vibration and Shock, 2020,38(14): 53-58.
[8]ABOUTANIOS E, MULGREW B.Iterative frequency estimation by interpolation on fourier coefficients[J].IEEE Transactions on Signal Processing, 2005,53(4): 1237-1242.
[9]CANDAN C.Fine resolution frequency estimation from three DFT samples: case of windowed data[J].Signal Processing, 2015,114: 245-250.
[10]YE S L, ABOUTANIOS E.An algorithm for the parameter estimation of multiple superimposed exponentials in noise[C]//IEEE International Conference on Acoustics, Speech and Signal Processing.South Brisbane: IEEE, 2015.
[11]YE S L, ABOUTANIOS E.Rapid accurate frequency estimation of multiple resolved exponentials in noise[J].Signal Processing, 2017,132: 29-39.
[12]AHMET S, KHALID Q.A fast method for estimating frequencies of multiple sinusoidals[J].IEEE Signal Processing Letters, 2020,27: 386-390.
[13]DJUKANOVIC S.An accurate method for frequency estimation of a real sinusoid [J].IEEE Signal Processing Letters, 2016,23(7): 915-918.
[14]DJUKANOVIC S, POPOVIC V.Efficient and accurate detection and frequency estimation of multiple sinusoids[J].IEEE Access, 2019,7: 1118-1125.
[15]YE S L, SUN J D, ABOUTANIOS E.On the estimation of the parameters of a real sinusoid in noise[J].IEEE Signal Processing Letters, 2017,24(99): 638-642.
[16]KOCHERRY D L, YE S L, ABOUTANIOS E.Estimating parameters of multiple damped complex sinusoids with model order estimation[C]// IEEE International Workshop on Signal Processing Systems.Dallas: IEEE, 2016.

PDF(907 KB)

Accesses

Citation

Detail

段落导航
相关文章

/