基于正交试验的框架端节点抗震性能影响因素分析

赵卫平,赵芷迎,雷永旺,王振兴

振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 203-211.

PDF(2858 KB)
PDF(2858 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 203-211.
论文

基于正交试验的框架端节点抗震性能影响因素分析

  • 赵卫平,赵芷迎,雷永旺,王振兴
作者信息 +

Influencing factor analysis on the seismic behaviors of frame exterior joints based on orthogonal experiments

  • ZHAO Weiping,ZHAO Zhiying,LEI Yongwang,WANG Zhenxing
Author information +
文章历史 +

摘要

为找出框架端节点抗震性能的优良设计组合,基于正交试验原理建立了L9(34)正交表并完成了9组拟静力试验。以A(混凝土强度)、B(锚固方式)、C(纵筋配筋率)为主要研究因素,且每个因素设计三个水平,分别为A1(C50),A2(C60),A3(C70);B1(弯折),B2(螺栓),B3(贴焊);C1(1.63%),C2(2.08%),C3(2.58%)。对试验结果进行方差和极差分析,并通过新复极差(SSR)法进行各因素水平间多重比较。试验结果表明:三个因素对试件延性、耗能能力、极限承载力均有显著影响;各抗震性能指标的主次效应和最优组合如下:延性的影响主次效应为C>A>B,最优组合为A3 + B3 + C1;耗能能力的影响主次效应为A>C>B,最优组合为A3+B3+C2;极限承载力的影响主次效应为C>A>B,最优组合为A3+B1+C3。综合抗震性能可选取的较优组合为A3+B3+C1 或 C2。将各因素水平均值的降幅计算结果作为设计组合对各因素敏感度分析的依据。结果显示各抗震性能指标对不同端节点设计组合的因素敏感程度不同,可针对最大敏感因素进行改性工作。研究结果对实际工程具有一定参考价值和指导意义。

Abstract

In order to achieve the optimized seismic performance design of frame exterior joints, a L9 (34) orthogonal table was established based on the orthogonal test principle and 9 groups of quasi-static tests were conducted.The main research factors were A (concrete strength), B (anchorage method) and C (longitudinal reinforcement ratio).Each factor was designed in three levels, namely A1 (C50), A2 (C60) and A3 (C70 ); B1 (bending), B2 (bolt) and B3 (paste welding); C1 (1.63%), C2 (2.08%) and C3 (2.58%).The test results were processed by the variance and range analysis, and then multiple comparisons were performed by the new multiple range method (SSR method).The results show that all of the three factors have significant effects on the ductility, energy consumption and ultimate bearing capacity of specimens.The ranking of the seismic performance influencing factors and their optimal combination are as follows: the order of influence on ductility is C>A>B, and the optimal combination for ductility is A3+B3+C1; the order of influence on energy dissipation capacity is A>C>B, and the optimal combination for energy dissipation capacity is A3+B3+C2; the order of influence on ultimate bearing capacity is C>A>B, and the optimal combination for energy dissipation capacity is A3+B1+C3.The preferred combination for comprehensive seismic performance is A3+B3+C1 or C2.The calculation results of the decrease rate of the average value of each factor were used as the basis for the analysis of the sensitivity of design combinations to each factor.The results show that each seismic performance index has different sensitivity to the factors of different exterior joints design combinations, and modifications could be performed aiming at the most sensitive factors.The research results have certain reference value and guiding significance for practical engineering.

关键词

钢筋混凝土 / 框架端节点 / 抗震性能 / 正交试验 / 拟静力试验

Key words

reinforced concrete / frame exterior joint / seismic behavior / orthogonal test / quasi-static test

引用本文

导出引用
赵卫平,赵芷迎,雷永旺,王振兴. 基于正交试验的框架端节点抗震性能影响因素分析[J]. 振动与冲击, 2021, 40(14): 203-211
ZHAO Weiping,ZHAO Zhiying,LEI Yongwang,WANG Zhenxing. Influencing factor analysis on the seismic behaviors of frame exterior joints based on orthogonal experiments[J]. Journal of Vibration and Shock, 2021, 40(14): 203-211

参考文献

[1]吕西林, 郭子雄, 王亚勇.RC框架梁柱组合件抗震性能试验研究[J].建筑结构学报, 2001, 22(1):2-7.
L Xilin,GUO Zixiong,WANG Yayong.Experimental study on seismic behavior of beam-column subassemblages in RC frame [J].Journal of Building Sturctures, 2001, 22(1):2-7.
[2]王信君. 配置HRB500钢筋的框架中间层端节点抗震性能试验研究[D].重庆:重庆大学, 2007.
[3]冯长征.配置HRB500钢筋的框架顶层端节点抗震性能试验研究[D].重庆:重庆大学, 2007.
[4]CHANG B, HUTCHINSON T, WANG X, et al.Seismic performance of beam-column subassemblies with high-strength steel reinforcement[J].ACI Structural Journal,2014, 111(6):1329-1338.
[5]LI B, LEONG C L.Experimental and numerical investigations of the seismic behavior of high-strength concrete beam-column joints with column axial load[J].Journal of Structural Engineering, 2014, 141(9):04014220.
[6]崔钦淑, 王建东, 郭颜恺.高强箍筋高强混凝土Z形截面柱框架节点抗震性能试验研究[J].建筑结构学报, 2018, 39(3):56-66.
CUI Qinshu, WANG Jiandong, GUO Yankai.Experimental research on seismic behavior of high-strength concrete Z-shaped column frame joints with high-strength stirrups[J].Journal of Building Structures, 2018, 39(3):56-66.
[7]LEE H J, CHANG J.High-strength reinforcement in exterior beam-column joints under cyclic loading[J].ACI Structural Journal, 2017, 114(5): 1325-1338.
[8]刘璐, 黄小坤, 田春雨, 等.配置大直径大间距HRB500高强钢筋的装配整体式钢筋混凝土框架节点抗震性能试验研究[J].建筑结构学报, 2016,37(5):247-254.
LIU Lu, HUANG Xiaokun, TIAN Chunyu, et al.Experimental study on seismic performance of precast RC frame joints with HRB500 high strength rebars of large diameter and spacing [J].Journal of Building Structures, 2016,37(5):247-254.
[9]CHUN S C, KIM D Y.Evaluation of mechanical anchorage of reinforcement by erxterior beam-column joint experiments[C] ∥ 13th World Conference on Earthquake Engineering.Vancouver: Canadian Association for Earthquake Engineering, 2004.
[10]CHUN S C, LEE S H, KANG T H K, et al.Mechanical anchorage in exterior beam-column joints subjected to cyclic loading[J].ACI Structural Journal, 2007, 104(1): 102-112.
[11]LEE H J, YU S Y.Cyclic response of exterior beam-column joints with different anchorage methods[J].ACI Structural Journal, 2009, 106(3): 329-339.
[12]王敏, 傅剑平, 朱爱萍.梁筋在节点中采用锚固板与90°弯折锚固的对比试验研究[J].建筑结构学报, 2013, 34(10):128-136.
WANG Min, FU Jianping, ZHU Aiping.Experimental research on beam-column joints with beam rebars anchored by heads or 90-degree hooks[J].Journal of Building Structures, 2013, 34(10):128-136.
[13]何浩祥,王文涛,吴山.基于均匀变形和混合智能算法的框架结构抗震优化设计[J].振动与冲击,2020,39(4):113-121.
HE Haoxiang, WANG Wentao, WU Shan.Aseismic optimization design of a frame structure based on uniform deformation and a hybrid intelligent algorithm[J].Journal of  Vibration and Shock, 2020, 39(4):113-121.
[14]张健新. 高强钢筋高韧性混凝土框架节点抗震性能试验及设计方法研究[D].天津:河北工业大学,2016.
[15]唐湘晋, 陈家清, 毛树华.应用数理统计[M].武汉:武汉理工大学出版社, 2013.
[16]钢筋混凝土用钢第2部分:热轧带肋钢筋:GB/T 1499.2—2018 [S].北京:中国标准出版社, 2018.
[17]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社, 2011.
[18]江见鲸,李杰,金伟良.高等混凝土原理 [M].北京:中国建筑工业出版社,2007.
[19]孟二从,余亚琳,张旭,等.钢管再生混凝土柱-再生混凝土短梁框架抗震性能及损伤演变[J].振动与冲击,2019,38(20):188-195.
MENG Ercong, YU Yalin, ZHANG Xu, et al.Seismic behavior and damage evolution of RAC filled steel tube column versus RAC short beam frame[J].Journal of Vibration and Shock, 2019, 38(20):188-195.
[20]建筑抗震试验规程: JGJ/T 101—2015[S].北京:中国建筑工业出版社, 2015.
[21]于建兵,周莉萍,郭正兴,等.部分高强筋预制混凝土框架节点抗震性能研究[J].振动与冲击,2019,38(11):17-23.
YU Jianbing, ZHOU Liping, GUO Zhengxing, et al.Aseismic behavior of precast concrete frame joints with partial high strength tendons[J].Journal of Vibration and Shock, 2019,38(11):17-23.
[22]陈诚.钢筋混凝土框架边节点抗震性能试验研究[D].哈尔滨:哈尔滨工业大学,2010.
[23]吴群英,林亮.应用数理统计[M].天津:天津大学出版社,2004.
[24]邓明科, 吕浩, 宋恒钊.外包钢板-高延性混凝土组合连梁抗震性能试验研究[J].工程力学, 2019, 36(3): 192-202.
DENG Mingke, L Hao, SONG Hengzhao.Experimental research on aseismic behavior of high ductile concrete filled steel plate composite coupling beams [J].Engineering Mechanics, 2019, 36(3): 192-202.
[25]PAULAY T, PARK R, PRIESTLEY M J N.Reinforced  concrete beam-column joints under seismic action[J]. Journal of the American Concrete Institute, 1978, 75(11): 585-593.
[26]王博, 白国良, 代慧娟, 等.再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J].工程力学, 2013,30(10): 54-64.
WANG Bo, BAI Guoliang, DAI Huijuan, et al.Experimental and mechanical analysis of bond-slip performance between recycled concrete and rebar [J].Engineering Mechanics, 2013, 30(10): 54-64.
 

PDF(2858 KB)

Accesses

Citation

Detail

段落导航
相关文章

/