[1]牟竹青, 黄国勇, 吴建德, 等.基于DEMD的高压隔膜泵单向阀早期故障诊断 [J].振动、测试与诊断, 2018, 38(4): 758-764.
MU Zhuqing, HUANG Guoyong, WU Jiande, et al.Early fault diagnosis of high pressure diaphragm pump check valve based on differential empirical mode decomposition [J].Journal of Vibration, Measurement & Diagnosis, 2018, 38(4): 758-764.
[2]MA J, WU J D, WANG X D.Fault diagnosis method of check valve based on multikernel cost-sensitive extreme learning machine [J].Complexity, 2017(6): 1-19.
[3]YIN S, LI X W, GAO H J, et al.Data-based techniques focused on modern industry: an overview [J].IEEE Transactions on Industrial Electronics, 2014, 62(1): 657-667.
[4]岳应娟,王旭,蔡艳平.内燃机变分模态Rihaczek谱纹理特征识别诊断[J].仪器仪表学报,2017,38(10):2437-2445.
YUE Yingjuan,WANG Xu,CAI Yanping.Internal combustion engine fault diagnosis based on identification of variational modal Rihaczek spectrum texture characterization [J].Chinese Journal of Scientific Instrument ,2017,38 (10): 2437-2445.
[5]LIU Y Y, YU Z W, ZENG M, et al.LLE for submersible plunger pump fault diagnosis via joint wavelet and SVD approach [J].Neurocomputing, 2016, 185:202-211.
[6]ZHAO X, JIA M.Fault diagnosis of rolling bearing based on feature reduction with global-local margin Fisher analysis [J].Neurocomputing, 2018, 315:447-464.
[7]LEI Y G, YANG B W, JIANG X W, et al.Applications of machine learning to machine fault diagnosis: a review and roadmap [J].Mechanical Systems and Signal Processing, 2020, 138:106587.
[8]文成林, 吕菲亚.基于深度学习的故障诊断方法综述 [J].电子与信息学报, 2020, 42(1): 234-248.
WEN Chenglin, L Feiya.Review on deep learning based fault diagnosis[J].Journal of Electronics and Information Technology, 2020, 42(1): 234-248.
[9]JIAO J Y, ZHAO M, LIN J, et al.A comprehensive review on convolutional neural network in machine fault diagnosis [J].Neurocomputing, 2020, 417:36-63.
[10]高佳豪,郭瑜,伍星.基于SANC和一维卷积神经网络的齿轮箱轴承故障诊断[J].振动与冲击, 2020, 39(19): 204-209.
GAO Jiahao, GUO Yu, WU Xing.Gearbox bearing fault diagnosis based on SANC and 1D CNN[J].Journal of Vibration and Shock, 2020, 39(19): 204-209.
[11]李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击, 2018, 37(19): 124-131.
LI Heng, ZHANG Qing, QIN Xianrong, et al.Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J].Journal of Vibration and Shock, 2018, 37(19): 124-131.
[12]WEN L, LI X Y, GAO L, et al.A new convolutional neural network-based data-driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics, 2017, 65(7): 5990-5998.
[13]CHEN Z Y, MAURICIO A, LI W H, et al.A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks[J].Mechanical Systems and Signal Processing, 2020, 140: 106683.
[14]ANTONI J. Cyclostationarity by examples [J].Mechanical Systems and Signal Processing, 2009, 23(4): 987-1036.
[15]DELVECCHIO S, D’ELIA G, DALPIAZ G.On the use of cyclostationary indicators in IC engine quality control by cold tests [J].Mechanical Systems and Signal Processing, 2015, 60:208-228.
[16]BORGHESANI P, SHAHRIAR M R.Cyclostationary analysis with logarithmic variance stabilisation [J].Mechanical Systems and Signal Processing, 2016, 70:51-72.
[17]ANTONI J, HANSON D.Detection of surface ships from interception of cyclostationary signature with the cyclic modulation coherence [J].IEEE Journal of Oceanic Engineering, 2012, 37(3): 478-493.
[18]ANTONI J. Cyclic spectral analysis in practice [J].Mechanical Systems and Signal Processing, 2007, 21(2): 597-630.
[19]ANTONI J, XIN G, HAMZAOUI N.Fast computation of the spectral correlation [J].Mechanical Systems and Signal Processing, 2017, 92:248-277.