考虑含石量和坡度不同组分下颗粒流冲击刚性结构的力学模型研究

成浩,韩培锋,苏有文

振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 268-298.

PDF(3281 KB)
PDF(3281 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 268-298.
论文

考虑含石量和坡度不同组分下颗粒流冲击刚性结构的力学模型研究

  • 成浩1,韩培锋1, 2,苏有文1
作者信息 +

Model for the particle flow impact on rigid structures with different composition of rock content and slope

  • CHENG Hao1, HAN Peifeng1, 2, SU Youwen1
Author information +
文章历史 +

摘要

桥梁箱梁结构在土石混合体滑坡或者崩塌灾害冲击下受损破坏现象较为普遍,而含石量和坡度是影响箱梁结构冲击和破坏的重要因素。因此,采用离散元素法(DEM)模拟不同含石量和坡度作用下刚性结构的动力响应。结果表明:含石量越大,坡度越大,颗粒流的动能耗散率耗时越短,冲击力越大;含石量对冲击力的影响程度比坡度小;土石耦合作用要比细颗粒土或块石颗粒单独作用对法向力影响大;基于模拟结果构建土石混合体冲击刚性结构的力学模型,推导出冲击力及其作用距离方程。为验证构建的力学模型的可靠性,将模型冲击力计算结果与Jiang模型、Adel模型及模拟结果进行对比发现模型的冲击力计算结果与模拟结果基本吻合。研究结果可为该类灾害的防治提供参考。

Abstract

The damage of box girder bridge structures under the impact of soil-rock mixture landslide or collapse is rather common, and the stone content and slope are important factors affecting the impact and damage of box girder structures.A discrete element method (DEM) was used to simulate the dynamic responses of rigid structures under different composition of stone content and slope.The results show that the larger the stone content and the larger the slope, the shorter the kinetic energy dissipation time of the particle flow and the greater the impact force; the effect of the stone content on the impact force is less than that of the slope; the coupling action of soil and rock particles has a greater influence on the normal force than the single action of soil or rock particles.Based on the simulation results, a mechanical model for the impact of the soil-rock mixture on rigid structures was constructed, and the equation for the impact force and impact force action distance was derived.In order to verify the reliability of the constructed mechanical model, the calculation results of the impact force by the model were compared with those by the Jiang model, the Adel model and the simulation.It is found that the impact forces calculated according to the model are basically consistent with the simulation results.The research results provide a reference to the prevention and treatment of this type of disasters.

关键词

含石量 / 坡度 / 土石混合体 / 冲击力 / 力学模型

Key words

stone content / slope / soil-rock mixture / impact force / impact model

引用本文

导出引用
成浩,韩培锋,苏有文. 考虑含石量和坡度不同组分下颗粒流冲击刚性结构的力学模型研究[J]. 振动与冲击, 2021, 40(14): 268-298
CHENG Hao, HAN Peifeng, SU Youwen. Model for the particle flow impact on rigid structures with different composition of rock content and slope[J]. Journal of Vibration and Shock, 2021, 40(14): 268-298

参考文献

[1]徐文杰, 胡瑞林.土石混合体概念、分类及意义[J].水文地质工程地质, 2009,4:50-56.
XU Wenjie, HU Ruilin.Conception, classification and significations of soil-rock mixture[J].Hydrogeology & Engineering Geology, 2009, 4: 50-56.
[2]廖秋林, 李晓, 郝钊, 等.土石混合体的研究现状及研究展望[J].工程地质学报, 2006(6): 800-807.
LIAO Qiulin, LI Xiao, HAO Zhao, et al.Current status and future trends of studies on rock and soil aggregates(RSA)[J].Journal of Engineering Geology, 2006(6): 800-807.
[3]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报, 2007(3): 433-454.
HUANG Runqiu.Large-scale landslides and their sliding mechanisms in China since the 20th century[J].Chinese Journal of Rock Mechanics and Engineering, 2007(3): 433-454.
[4]国家统计局.中国统计年鉴2017[M].北京:中国统计出版社, 2017.
[5]黄润秋, 刘卫华, 周江平,等.滚石运动特征试验研究[J].岩土工程学报, 2007(9): 1296-1302.
HUANG Runqiu, LIU Weihua, ZHOU Jiangping, et al.Rolling tests on movement characteristics of rock blocks[J].Chinese Journal of Geotechnical Engineering, 2007(9): 1296-1302.
[6]黄润秋, 刘卫华, 龚满福,等.树木对滚石拦挡效应研究[J].岩石力学与工程学报, 2010, 29(增刊1): 2895-2901.
HUANG Runqiu, LIU Weihua, GONG Manfu, et al.Study of trees resistance effect test on rolling rock blocks[J].Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup1): 2895-2901.
[7]何思明.滚石对防护结构的冲击压力计算[J].工程力学, 2010, 27(9): 175-180.
HE Siming.Calculation of compact pressure of rock fall on shide structure[J].Engineering Mechanics, 2010, 27(9): 175-180.
[8]WANG D P, LI Q Z, BI Y Z, et al.Effects of new baffles system under the impact of rock avalanches[J].Engineering Geology, 2020, 264: 105261.
[9]JIANG Y J, ZHAO Y, TOWHATA I, et al.Influence of particle characteristics on impact event of dry granular flow[J].Powder Technology, 2015, 270(A): 53-67.
[10]JIANG Y J, TOWHATA I.Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J].Rock Echanics and Rock Eneineerine, 2013, 46(4): 713-729.
[11]ADEL A, STEPHANE L, THIERRY F.Dry granular avalanche impact force on a rigid wall: analytic shock solution versus discrete element simulations[J].Physical Review E, 2018, 97(5): 052903.
[12]ALBABA A, LAMBERT S, NICOT F, et al.Relation bettveen microstructure and loading applied by a granular flow to a rigid wall using DEM modeling[J].Granular Matter, 2015, 17(5): 603-616.
[13]王东坡, 何思明, 吴水, 等.滚石防护棚洞EPS热层结构缓冲作用研究[J].振动与冲击, 2014, 33(4):199-203.
WANG Dongpo, HE Siming, WU Shui, et al.Cushioning effect of rock sheds with EPS cushion on rock-falls action[J].Journal of Vibration and Shock, 2014, 33(4):199-203.
[14]MINDLIN R D.Compliance of elastic bodies in contact[J].Journal of Applied Mechanics, 1949, 16: 259-268.
[15]TSUJI Y, TANAKA T, ISHIDA T.Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J].Powder Technology, 1992, 71: 239-250.
[16]POTYONDY D O, CUNDALL P A.A bonded-particle model for rock[J].International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 1329-1364.
[17]胡国明.颗粒系统的离散元素法分析仿真—离散元素法的工业应用与EDEM软件简介[M].武汉: 武汉理工大学出版社, 2010.
[18]李骅.风筛式清选装置设计理论与方法研究[D].南京: 南京农业大学, 2012.
[19]杨海龙.沟谷偏转型滑坡—碎屑流运动机理研究[D].绵阳: 西南科技大学, 2018.
[20]王云霞, 梁志杰, 张东兴, 等.基于离散元的玉米种子颗粒模型种间接触参数标定[J].农业工程学报, 2016, 32(22): 36-42.
WANG Yunxia, LIANG Zhijie, ZHANG Dongxing, et al.Calibration method of contact characteristic parameters for corn seeds based on EDEM[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 36-42.
[21]贾旭光, 陈曦, 李鑫.不同粒度和堆载形态下散体瞬时自然安息角的实验研究[J].现代矿业, 2015, 549(1): 25-27.
JIA Xuguang, CHEN Xi, LI Xin.Experimental research on instantaneous natural repose angle of granular slope under different granularity and stack form[J].Modern Mining, 2015, 549(1): 25-27.
[22]刘军, 于刚, 赵长兵, 等.不同尺度分布散粒材料砂堆形成过程的二维离散元模拟[J].计算力学学报, 2008, 25(4): 568-573.
LIU Jun, YU Gang, ZHAO Changbing, et al.2D DEM simulation on the sandpile formation for granular materials with different grain size distributions [J].Chinese Journal of Computational Mechanics, 2008, 25(4): 568-573.
[23]樊晓一.西南地区地震滑坡坡度分布特征研究[J].四川地质学报, 2013, 33(3): 328-331.
FAN Xiaoyi.Study on gradient distribution of earthquake-caused landslides in Southwest, China [J].Acta Geologica Sichuan, 2013,33(3):328-331.
[24]舒志乐,刘新荣,刘保县, 等.土石混合体粒度分形特性及其与含石量和强度的关系[J].中南大学学报(自然科学版), 2010, 41(3): 1096-1101.
SHU Zhile, LIU Xinrong, LIU Baoxian, et al.Granule fractal properties of earth-rock aggregate and relationship between its gravel content and strength [J].Journal of Central South University(Science and Technology), 2010, 41(3): 1096-1101.
[25]KWAN J S H, CHEUNG R W M.Suggestion on design approaches for flexible debris-resisting barriers: DN1/2012[S].Hong Kong:The Government of Hong Kong Standards and Testing Division, 2012.
[26]HOLZINGER G, HUBL J.Impact forces on a debris flow breaker derived from laboratory experiments[Z].10 Kongress Interpraevent,2004.
[27]罗特军.理论力学[M].武汉: 武汉大学出版社, 2013.

PDF(3281 KB)

Accesses

Citation

Detail

段落导航
相关文章

/