摘要
为研究地震下摩擦摆隔震支座在连续梁桥中的减隔震效果及动力行为,以某(24+32+24)m箱型等截面铁路连续梁桥为原型,进行了1/10缩尺模型的连续梁桥振动台试验。采用3组实测近场地震波进行纵竖向联合输入,观测桥梁试验中及震后损伤情况,并对桥梁位移、加速度及应变响应进行了分析。结果表明:不同近场地震下结构响应具有显著差异;随着地震波地面峰值加速度(PGA)增大,中墩纵向位移平均幅值小于边墩,且其增幅率远小于边墩盖梁;当PGA增大时,摩擦摆支座的隔震率更高,隔震效果更好;在0.5g地震作用下中墩仅出现少量细微裂缝,纵筋最大应变为786 με远小于其屈服应变,说明桥墩未屈服,摩擦摆支座可以有效降低桥墩内力响应。
Abstract
To investigate the isolation performance and dynamic behavior of a continuous bridge with friction pendulum bearings under earthquake, taking a (24+32+24)m continuous railway bridge with constant depth box section as a prototype, and the shaking table tests of a 1/10 scale bridge model were conducted.Three typical near-field ground motion records were selected as the input excitations, and the longitudinal and vertical waves were combinedly input.The phenomena in shaking process and post-earthquake damage were observed, the seismic responses were analyzed in terms of displacement, acceleration and strain.The results show that there are obvious differences in responses under different near-fault earthquake waves.With the increase of the earthquake wave’s peak ground motion(PGA), the average longitudinal displacement amplitude of middle piers is smaller than that of side piers, and its increase rate is much smaller than that of side piers.When the PGA is increased, the isolation efficiency and effect of friction pendulum bearing (FPB) is higher and better.Only a few cracks appear under the 0.5g earthquake wave, and the maximum longitudinal reinforcement strain is only 786 με in the mid pier, which is far away from the rebar yielding strain, indicating that this pier is not in the yield state and the FPBs can reduce the internal force response effectively.
关键词
铁路连续梁桥 /
摩擦摆支座(FPB) /
振动台试验 /
减隔震 /
地震响应
{{custom_keyword}} /
Key words
railway continuous girder-bridge /
friction pendulum bearing(FPB) /
shaking table test /
seismic isolation /
seismic response
{{custom_keyword}} /
邵长江,肖正豪,漆启明,韦旺,何俊明.
#br#
摩擦摆支座隔震铁路连续梁桥振动台试验研究[J]. 振动与冲击, 2021, 40(14): 292-298
SHAO Changjiang,XIAO Zhenghao,QI Qiming,WEI Wang,HE Junming.
Shaking table test on a railway continuous girder bridge with friction pendulum bearings[J]. Journal of Vibration and Shock, 2021, 40(14): 292-298
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]YAN B,DAI G L,HU N,et al.Recent development of design and construction of short span high-speed railway bridges in China[J].Engineering Structures,2015,100:707-717.
[2]孙数礼.高速铁路桥梁设计与实践[M].北京: 中国铁道出版社,2011.
[3]庄军生.桥梁减震隔震支座和装置[M].北京: 中国铁道出版社,2012.
[4]ZAYAS V A,LOW S S,MAHIN S A.A simple pendulum technique for achieving seismic isolation[J].Earthquake Spectra,2012,6(2):317-333.
[5]李冰,王少华,邓斌.摩擦摆支座在高速铁路桥梁中的隔震性能研究[J].机械科学与技术,2015,34(3):339-343.
LI Bing,WANG Shaohua,DENG Bin.Research on isolation properties of friction pendulum bearing for high-speed railway bridges[J].Mechanical Science and Technology for Aerospace Engineering,2015,34(3):339-343.
[6]占玉林,张磊,张强,等.摩擦摆支座参数对隔震桥梁地震响应的影响[J].桥梁建设,2018,48(3):45-49.
ZHAN Yulin,ZHANG Lei,ZHANG Qiang,et al.Effects of parameters of friction pendulum bearings on seismic responses of seismically isolated bridge[J].Bridge Construction,2018,48(3):45-49.
[7]杨华平,钱永久,樊启武,等.大跨铁路钢桁连续梁桥减隔震方案比较研究[J].地震工程学报,2017,39(6):1097-1104.
YANG Huaping,QIAN Yonjiu,FAN Qiwu,et al.Comparative study on seismic mitigation and isolation schemes for a long-span railway steel truss continuous beam bridge[J].China Earthquake Engineering Journal,2017,39(6):1097-1104.
[8]刘正楠,陈兴冲,张永亮,等.FVD与FPB在大跨长联减隔震体系梁桥中的联合作用机理研究[J].地震工程学报,2019,41(3):619-625.
LIU Zhengnan,CHEN Xingchong,ZHANG Yongliang,et al.Combined action mechanism of FVD and FPB in large-span and long-unit bridge with a seismic isolation system[J].China Earthquake Engineering Journal,2019,41(3):619-625.
[9]张常勇,钟铁毅,杨海洋.摩擦摆支座隔震连续梁桥地震能量反应研究[J].振动与冲击,2017,36(16):63-67.
ZHANG Changyong, ZHONG Tieyi,YANG Haiyang.A study on seismic energy responses of a continuous girder bridge isolated by a friction pendulum system[J].Journal of Vibration and Shock,2017,36(16):63-67.[10]吴迪,戴隆华,臧晓秋,等.高铁隔震桥梁模拟振动台试验研究[J].铁道建筑,2018,58(4):29-33.
WU Di,DAI Longhua,ZANG Xiaoqiu,et al.Analysis of isolated high speed railway bridge by pseudo-earthquake shaking table tests[J].Railway Engineering,2018,58(4):29-33.
[11]魏标,刘义伟,蒋丽忠,等.地震作用下双曲面球型减隔震支座在铁路简支梁桥中的动力行为[J].土木工程学报,2019,52(6):110-118.
WEI Biao,LIU Yiwen,JIANG Lizhong,et al.Dynamic behavior of double spherical isolation bearing in simply-supported railway bridges under earthquakes[J].China Civil Engineering Journal,2019,52(6):110-118.
[12]WEN J N,HAN Q,DU X L.Shaking table tests of bridge model with friction sliding bearings under bi-directional earthquake[J].Structure and Infrastructure Engineering,2019,15(9):1264-1278.
[13]PONZO F C,CESARE A D,LECCESE G,et al.Shaking table testing on restoring capability of double concave friction pendulum seismic isolation systems[J].Earthquake Engineering & Structural Dynamics,2017,46:2337-2353.
[14]周颖,吕西林.建筑结构振动台模型试验方法与技术[M].北京: 科学出版社,2012.
[15]铁路工程抗震设计规范: GB 50111—2006(2009)[S].北京: 中国计划出版社,2009.
[16]桥梁双曲面球型减隔震支座: JT/T 927—2014[S].北京: 人民交通出版社,2014.
[17]公路桥梁摩擦摆式减隔震支座: JT/T 852—2013[S].北京: 人民交通出版社,2013.
[18]铁路桥梁球型支座: TB/T 3320—2013[S].北京: 中国铁道出版社,2013.
[19]ZHOU Y,CHEN P.Shaking table tests and numerical studies on the effect of viscous dampers on an isolated RC building by friction pendulum bearings[J].Soil Dynamic and Earthquake Engineering,2017,100:330-344.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}