考虑路面不平顺随机性的汽车过桥动力响应分析

谢娟娟,李晋,田震,甄龙信,谷雨,劳晓东,张成光

振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 299-306.

PDF(1292 KB)
PDF(1292 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (14) : 299-306.
论文

考虑路面不平顺随机性的汽车过桥动力响应分析

  • 谢娟娟1,李晋1,田震1,甄龙信2,谷雨1,劳晓东1,张成光1
作者信息 +

Dynamic response analysis of vehicles crossing a bridge considering the randomness of road surface roughness

  • XIE Juanjuan1, LI Jin1, TIAN Zhen1, ZHEN Longxin2, GU Yu1, LAO Xiaodong1, ZHANG Chengguang1
Author information +
文章历史 +

摘要

为分析考虑随机路面不平顺情况下的车辆过桥动力响应,建立了随机汽车-桥梁耦合振动模型,路面不平顺采用路面谱进行模拟转换,引入概率密度演化方法对系统的随机响应进行计算,通过2个算例进行了验证:与经典算例进行对比验证模型的可靠性;与蒙特卡洛法对比验证了概率密度演化方法计算随机车-桥系统动力响应的精度及效率。2个算例证明了该随机振动系统模型计算结果可靠,同时概率密度演化方法能够在保证精度的前提下有效提高计算效率。对不同道路不平度、不同车速情况下的车辆、桥梁随机响应进行分析,结果表明:车速对桥梁响应均值的影响不敏感,对车辆响应均值影响较大;桥梁与车辆响应标准差均随车速增大而增大。不同道路等级工况下,桥梁位移与车辆加速度概率最大值总体上都随车速增大而增大;在不同速度工况下,桥梁位移与车辆加速度概率最大值随着道路等级变差而明显增大。

Abstract

In order to analyze the dynamic response of vehicles crossing a bridge considering random road surface roughness, a random vehicle-bridge coupling vibration model was established.The road surface roughness was simulated and transformed using the road irregularity power spectrum, and the probability density evolution method was introduced to solve the system’s random response.The calculation was carried out and verified by two examples: the reliability of the model was verified by comparison with the classical examples; and the precision and efficiency of dynamic responses of the stochastic vehicle-bridge system calculated by the probability density evolution method were verified by comparison with the Monte Carlo method results.The two cases show that the calculation results of the random vibration system model are reliable, and the probability density evolution method can effectively improve the calculation efficiency under the premise of ensuring accuracy.Finally, the random responses of vehicles and bridges at different speeds were analyzed.The results show that: the speed of the vehicle is not sensitive to the mean value of the bridge response, but it has a greater impact on the mean value of the vehicle response; the standard deviation of the responses of the bridge and the vehicle increases as the vehicle speed increases.Under different road grade, the probability maximums of the bridge displacement and vehicle acceleration increase with the increase of vehicle speed; under different speed condition, the probability maximums of the bridge displacement and vehicle acceleration increase with the reducing of the road grade.

关键词

车桥耦合 / 概率密度演化 / 路面平顺度 / 随机响应

Key words

vehicle-bridge coupling / probability density evolution method / roughness of road / random response

引用本文

导出引用
谢娟娟,李晋,田震,甄龙信,谷雨,劳晓东,张成光. 考虑路面不平顺随机性的汽车过桥动力响应分析[J]. 振动与冲击, 2021, 40(14): 299-306
XIE Juanjuan, LI Jin, TIAN Zhen, ZHEN Longxin, GU Yu, LAO Xiaodong, ZHANG Chengguang. Dynamic response analysis of vehicles crossing a bridge considering the randomness of road surface roughness[J]. Journal of Vibration and Shock, 2021, 40(14): 299-306

参考文献

[1]王解军, 张伟.汽车荷载作用下梁桥的动力冲击效应研究[J].振动与冲击, 2007,26(6):125-128.
WANG Jiejun, ZHANG Wei.Study of dynamic impact effects of moving vehicle loading on beam bridge[J].Journal of Vibration and Shock, 2007,26(6):125-128.
[2]卜建清, 杜建刚, 李向国.过桥汽车振动响应影响因素分析[J].振动与冲击, 2008,27(5):119-124.
BU Jianqing, DU Jiangang, LI Xiangguo.Influential factors analysis on dyanmic reponses of vehicle-bridge system excited by passing vehicle through bridge[J].Journal of Vibration and Shock, 2008,27(5):119-124.
[3]肖祥, 张谢东, 任伟新.基于桥梁变形后构形车辆-柔性桥梁竖向耦合模型[J].振动与冲击, 2013,32(3):157-162.
XIAO Xiang, ZHANG Xiedong, REN Weixin.A kind of vehicle-flexible bridge vertical interaction model based on deformed configuration[J].Journal of Vibration and Shock, 2013, 32(3): 157-162.
[4]FRYBA L, NAKAGIRI S, YOSHIKAWA N.Stochastic analysis of a beam on random foundation with uncertain damping subjected to a moving load[M]∥Nonlinear Stochastic Mechanics.Berlin:Springer,1992.
[5]YANG Y B, YAU J D, HSU L C.Vibration of simple beams due to trains moving at high speeds[J].Engineering Structures, 1997,19(11):936-944.
[6]雷晓燕.高速铁路轨道动力学:模型、算法与应用[M].北京:科学出版社, 2015.
[7]雷晓燕, 张斌, 刘庆杰.列车-轨道系统竖向动力分析的车辆轨道单元模型[J].振动与冲击, 2010,29(3):168-173.
LEI Xiaoyan,ZHANG Bin,LIU Qingjie.Model of vehicle and track elements for vertical dynamic analysis of vehicle-track system[J].Journal of Vibration and Shock,2010,29(3): 168-173.
[8]夏禾, 张楠.车桥耦合振动工程[M].北京:科学出版社, 2014.
[9]王贵春, 李武生.基于车桥耦合振动的车辆舒适性分析[J].振动与冲击, 2016,35(8):224-230.
WANG Guichun, LI Wusheng.Analysis on the vehicle ride comfort based on vehicle-bridge coupled vibration[J].Journal of Vibration and Shock, 2016,35(8):224-230.
[10]韩万水, 陈艾荣.侧风与桥梁振动对车辆行驶舒适性影响研究[J].土木工程学报, 2008(4):55-60.
HAN Wanshui, CHEN Airong.Effects of crosswind and bridge motion on ride comfort of road vehicles[J].China Civil Engineering Journal, 2008(4):55-60.
[11]胡昌斌, 孙增华.路面板固化翘曲对车辆动荷载和行驶舒适性的影响[J].振动与冲击, 2014,33(23):1-8.
HU Changbin, SUN Zenghua.Effects of a slab’s built-in curling on dynamic load and riding comfort of vehicles [J].Journal of Vibration and Shock, 2014, 33(23): 1-8.
[12]桂水荣, 张政韬, 陈水生, 等.桥面不平引起车桥系统随机振动车速因素分析[J].振动、测试与诊断, 2018,38(6):1223-1228.
GUI Shuirong, ZHANG Zhengtao, CHEN Shuisheng, et al. Analysis of random vibration speed factors of vehicle bridge system caused by uneven bridge deck[J].Journal of Vibration, Measurement & Diagnosis, 2018,38(6):1223-1228.
[13]WU S Q, LAW S S.Dynamic analysis of bridge with non-Gaussian uncertainties under a moving vehicle[J].Probabilistic Engineering Mechanics, 2011, 26(2):281-293.
[14]WU S Q, LAW S S.Dynamic analysis of bridge-vehicle system with uncertainties based on the finite element model[J].Probabilistic Engineering Mechanics, 2010,25(4):425-432.
[15]余志武, 毛建锋, 谈遂, 等.车桥竖向随机振动的概率密度演化分析[J].中南大学学报(自然科学版), 2015,46(4):1420-1427.
YU Zhiwu, MAO Jianfeng, TAN Sui, et al.Probability density evolution analysis of track-bridge vertical coupled vibration with irregularity random excitation [J].Journal of Central South University(Science and Technology), 2015,46(4):1420-1427.
[16]余志武, 毛建锋, 谈遂, 等.车辆参数随机的车桥竖向随机振动分析[J].铁道学报, 2015,37(1):97-104.
YU Zhiwu, MAO Jianfeng, TAN Sui, et al.The stochastic analysis of the track-bridge vertical coupled vibration with random train parameters[J].Journal of the China Railway Society, 2015, 37(1): 97-104.
[17]李杰, 陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报, 2003,35(6):716-722.
LI Jie, CHEN Jianbing.The probability density evolution method for analysis of dynamic nonlinear response of stochastic structures[J].Acta Mechanica Sinica, 2003, 35(6): 716-722.
[18]刘晶波, 杜修力.结构动力学[M].北京:机械工业出版社, 2007.
[19]吴神花, 雷晓燕.交叉迭代算法求解车辆-轨道非线性耦合方程的收敛性讨论[J].华东交通大学学报, 2015,32(3):23-31.
WU Shenhua, LEI Xiaoyan.Convergence condition of cross iterative algorithm for vehicle-track nonlinear coupling equations[J].Journal of East China Jiaotong University, 2015,32(3):23-31.
[20]WU S Q, LAW S S.Vehicle axle load identification on bridge deck with irregular road surface profile[J].Engineering Structures, 2011,33(2):591-601.
[21]机械振动 道路路面谱测量数据报告:GB/T 7031—2005[S].[S.l.]:[s.n.],2005.

PDF(1292 KB)

Accesses

Citation

Detail

段落导航
相关文章

/