[1]STAFFORD R O, GIURGIURTIU V.Semi-analytic methods for rotating Timoshenko beams[J].International Journal of Mechanical Sciences, 1975,17: 719-727.
[2]YOKOYAMA T.Free vibration characteristics of rotating Timoshenko beams[J].Journal of Mechanical Sciences, 1988,30(10): 743-755.
[3]YU S D, CLEGHORN W L.Free vibration of a spinning stepped Timoshenko beam[J].Journal of Applied Mechanics, 2000,67(4): 839-841.
[4]BAZOUNE A, KHULIEF Y A, STEPHEN N G, et al.Dynamic response of spinning tapered Timoshenko beams using modal reduction[J].Finite Element in Analysis and Design, 2001,37(3): 199-219.
[5]HASHEMI S M, RICHARD M J.Natural frequencies of rotating uniform beams with Coriolis effects[J].Journal of Vibration and Acoustics, 2001,123(4): 444-455.
[6]OGUAMANAM D C D, HEPPLER G R.Centrifugal stiffening of Timoshenko beams[C]//Structures, Structural Dynamics, and Materials and Co-located Conferences.Reston: AIAA, 1996.
[7]FUNG E H K, YAU D T W.Effects of centrifugal stiffening on the vibration frequencies of a constrained flexible arm[J].Journal of Sound and Vibration, 1999,224(5): 809-841.
[8]BERZERI M, SHABANA A A.Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation[J].Multibody System Dynamics, 2002,7: 357-387.
[9]ADAIR D, JAEGER M.Simulation of tapered rotating beams with centrifugal stiffening using the adomian decomposition method[J].Applied Mathematical Modelling, 2016,40(4): 3230-3241.
[10]ROY P A, MEGUID S A.Analytical modeling of the coupled nonlinear free vibration response of a rotating blade in a gas turbine engine[J].Acta Mechanica, 2018,229: 3355-3373.
[11]TIAN J J, SU J P, ZHOU K, et al.A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects[J].Journal of Sound and Vibration, 2018,426(21): 258-277.
[12]HODGES D H, DOWELL E H.Nonlinear equations of motion for the elastic and torsion of twisted nonuniform rotor blades[R].Washington, D.C.: NASA, 1974.
[13]SURACE G, ANGHEL V, MARES C.Coupled bending-bending-torsion vibration analysis of rotating pretwisted blades: an integral formulation and numerical examples[J].Journal of Sound and Vibration, 1997,206(4): 473-486.
[14]AVRAMOV K V, PIERRE C, SHYRIAIEVA N.Flexural-flexural-torsional nonlinear vibrations of pre-twisted rotating beams with asymmetric cross-sections[J].Journal of Vibration and Control, 2007,13(4): 329-364.
[15]AVRAMOV K V, PIERRE C, SHYRIAIEVA N.Nonlinear equations of flexural-flexural-torsional oscillations of rotating beams with arbitrary cross-section[J].International Applied mechanics, 2008,44: 123-132.
[16]OZGUMUS O O, KAYA M O.Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending-torsion coupling[J].International Journal of Engineering Science, 2007,45(2): 562-586.
[17]OZGUMUS O O, KAYA M O.Energy expressions and free vibration analysis of a rotating Timoshenko beam featuring bending-bending-torsion coupling[J].Archive of Applied Mechanics, 2013,83: 97-108.
[18]YUTAEK O, HONG H Y.Vibration analysis of a rotating pre-twisted blade considering the coupling effects of stretching, bending, and torsion[J].Journal of Sound and Vibration, 2018,431(29): 20-39.
[19]NOVOZHILOV V V.Foundations of the nonlinear theory of elasticity[M].3rd ed.Rochester: Graylock Press, 1963.
[20]TIMOSHENKO S P, GOODIER J N.Theory of elasticity[M].3rd ed.New York: McGraw-Hill Education, 1970.
[21]SINHA S K.Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end[J].International Journal of Non-linear Mechanics, 2005,40(1): 113-149.
[22]RAO S S.Mechanical vibrations[M].4th ed.New York: Pearson Education Inc., 2004.
[23]SINHA S K.Combined torsional-bending axial dynamics of a twisted rotating cantilever Timoshenko beam with contact-impact loads at the free end[J].Journal of Applied Mechanics, 2007,74(3): 505-522.