弹性约束充液管道的振动模态试验与预报研究

张子祥,王检耀,王鸿东,易宏

振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 1-10.

PDF(2389 KB)
PDF(2389 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 1-10.
论文

弹性约束充液管道的振动模态试验与预报研究

  • 张子祥1,2,王检耀1,2,王鸿东1,2,易宏1,2
作者信息 +

Vibration modal tests and prediction of liquid filled pipeline with elastic constraints

  • ZHANG Zixiang1,2, WANG Jianyao1,2, WANG Hongdong1,2, YI Hong1,2
Author information +
文章历史 +

摘要

充液管道是舰船主要的辐射噪声源和自噪声源之一,严重影响舰船的战斗力,有必要开展弹性约束充液管道振动模态的试验与预报研究。开展了未充液管道的模态试验,在约束未知的条件下基于多目标遗传算法NSGA-Ⅱ实现弹性约束的修正,并基于双向流固耦合的有限元法预报充液管道的湿模态振动特性。干湿模态有限元仿真结果与试验结果的固有频率平均误差分别为3.06%和2.47%,最大误差分别在0~6.19%和0~5.30%。振型基本相同,符合良好;充液管道湿模态的固有频率较干模态有明显降低,各阶频率漂移比例基本相同。证明了所用方法对管道干模态的约束修正结果可以应用在湿模态有限元分析中并获得良好的仿真精度。采用的多目标优化方法避免了权重选取困难、目标函数物理意义不明确等问题,能根据实际需要和偏好对修正结果进行灵活选择。为相关工作的开展提供了参考和建议。

Abstract

Liquid filled pipeline is one of the main radiated noise sources and self-noise sources of ships, it seriously affects the fighting capacity of ships. It is necessary to perform vibration modal tests and prediction of liquid filled pipeline with elastic constraints. Here, modal tests of pipeline without liquid filled were conducted. Under the condition of unknown constraints, the multi-objective genetic algorithm NSGA-Ⅱ was used to modify elastic constraints, and the finite element (FE) method based on bidirectional fluid-structure coupling was used to predict wet modal vibration characteristics of liquid filled pipeline. It was shown that the average error of natural frequencies between dry modal FE simulation results and test ones and that between wet modal FE simulation results and test ones were 3.06% and 2.47%, respectively and their maximum errors were within ranges of 0-6.19% and 0-5.30%, respectively; modal shape of each wet mode is basically same as that of dry mode, they agree well with each other; natural frequencies of wet modes were lower than those of dry modes, and each order frequency drift proportion is basically the same. The results showed that the modified results for constraints of pipeline dry modes with the proposed method can be applied in its wet modes FE analysis to obtain good simulation accuracy; the multi-objective optimization method used can avoid difficulties of weight choosing and unclear physical meaning of the objective function, and flexibly select the modified results according to the actual needs and preferences; reference and suggestions are provided for related works.

关键词

振动模态 / 双向流固耦合 / 弹性约束 / 模型修正

Key words

vibration mode / bidirectional fluid-structure coupling / elastic constraint / model updating

引用本文

导出引用
张子祥,王检耀,王鸿东,易宏. 弹性约束充液管道的振动模态试验与预报研究[J]. 振动与冲击, 2021, 40(15): 1-10
ZHANG Zixiang, WANG Jianyao, WANG Hongdong, YI Hong. Vibration modal tests and prediction of liquid filled pipeline with elastic constraints[J]. Journal of Vibration and Shock, 2021, 40(15): 1-10

参考文献

[1]王艳林, 王自东, 宋卓斐, 等. 潜艇管路系统振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2008, 30(6): 34-38.
WANG Yanlin, WANG Zidong, SONG Zhuofei, et al. Review of vibration and noise control technology in piping system for submarines[J]. Ship Science and Technology, 2008, 30(6): 34-38.
[2]梁向东. 管路振动噪声对船舶总体声隐身特性的影响[J]. 噪声与振动控制, 2010, 30(6): 127-135.
LIANG Xiangdong. Influence of pipeline’s vibration noise on acoustic steal nature of ships[J]. Noise and Vibration Control, 2010, 30(6): 127-135.
[3]张立翔, 黄文虎, TIJSSELING A S. 输流管道流固耦合振动研究进展[J]. 水动力学研究与进展, 2000, 15(3): 366-379.
ZHANG Lixiang, HUANG Wenhu, TIJSSELING A S. Review of FSI analysis of fluid-conveying pipes[J]. Journal of Hydrodynamics, 2000, 15(3): 366-379.
[4]任建亭, 姜节胜. 输流管道系统振动研究进展[J]. 力学进展, 2003, 33(3): 313-324.
REN Jianting, JIANG Jiesheng. Advances and trends on vibraion of pipes conveying fluid[J]. Advances in Mechanics, 2003, 33(3): 313-324.
[5]陈宇峰, 陈务军, 何艳丽, 等. 柔性飞艇主气囊干湿模态分析与影响因素[J]. 上海交通大学学报, 2014, 48(2): 234-243.
CHEN Yufeng, CHEN Wujun, HE Yanli, et al. Dry and wet modal analysis and evalutaion of influencing factors for flexible airship envelop[J]. Journal of Shanghai Jiao Tong University, 2014, 48(2): 234-243.
[6]CHIEU C T. Bending vibrations of a pipe line containing flowing fluid[R]. 3735, Kansas: Kansas State University, 1970.
[7]周名德, 朱大同. 含液管横向振动附加质量的计算[J]. 水利学报, 1980(4): 76-81.
ZHOU Mingde, ZHU Datong. Added mass computation of fluid-filled pipes with lateral vibration[J]. Journal of Hydraulic Engineering, 1980(4): 76-81.
[8]陈坚红, 周天情, 盛德仁, 等. 充流管道单向流固耦合数值模拟自动化研究[J]. 动力工程学报, 2012, 32(8): 612-633.
CHEN Jianhong, ZHOU Tianqing, SHENG Deren, et al. Automation of numerical simulation on one-way fluid-structure interaction of fluid-filled pipeline[J]. Journal of Chinese Society of Power Engineering, 2012, 32(8): 612-633.
[9]杨超. 非恒定流充液管系统耦合振动特性及振动抑制[D]. 武汉: 华中科技大学, 2007.
[10]KUMER J, WURM F H. Bi-directional fluid-structure interaction for large deformation of layered composite propeller blades[J]. Journal of Fluids and Structures, 2015, 57: 32-48.
[11]LESMEZ M, WIGGERT D, HATFIELD F. Modal analysis of vibrations in liquid-filled piping systems[J]. Journal of Fluids Engineering, 1990, 112(3): 311-318.
[12]张立翔. 弱约束充液管道FSI频响分析[J]. 工程力学, 1996, 13(2): 69-77.
ZHANG Lixiang. Frequency response analysis of FSI in liquid-fluid pipelines[J]. Engineering Mechanics, 1996, 13(2): 69-77. 
[13]LI Q S, YANG K, ZHANG L, et al. Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method[J]. International Journal of Mechanical Sciences, 2002, 44(10): 2067-2087.
[14]金长明, 王赣城, 高康, 等. 充液管道的传递矩阵法分析[J]. 噪声与振动控制, 2009, 29(6): 30-33.
JIN Changming, WANG Gancheng, GAO Kang, et al. Analysis of fluid-conveying pipe with transfer matrix method[J]. Noise and Vibration Control, 2009, 29(6): 30-33.
[15]李艳华, 柳贡民, 张寅豹. 流体管道横向振动的频域传递矩阵法[J]. 振动工程学报, 2009, 22(6): 597-602.
LI Yanhua, LIU Gongmin, ZHANG Yinbao. A transfer matrix method in frequency domain for lateral vibration of liquid-filled pipes[J]. Journal of Vibration Engineering, 2009, 22(6): 597-602.
[16]GUIDARA M A, TAIEB L H, TAIEB E H. Determination of natural frequencies in piping systems using transfer matrix method[J]. Lecture Notes in Control & Information Sciences, 2015, 789: 765-774.
[17]李艳华, 柳贡民. 流体管道流固耦合14方程频域传递矩阵法[J]. 船海工程, 2009, 38(5): 106-111.
LI Yanhua, LIU Gongmin. Frequency-domain transfer matrix method of 14 equations model for fluid-structure interaction in pipes[J]. Ship and Ocean Engineering, 2009, 38(5): 106-111.
[18]HANSSON P A, SANDBERG G. Dynamic finite element analysis of fluid-filled pipes[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24): 3111-3120.
[19]SEO Y S, JEONG W B, YOO W S, et al. Frequency response analysis of cylindrical shells conveying fluid using finite element method[J]. Journal of Mechanical Science and Technology, 2005, 19(2): 625-633.
[20]LI X, WANG S, LIANG R. Modal analysis of two typical fluid-filled pipes in aircraft[C]. Proceedings of 2011 International Conference on Fluid Power and Mechatronics, Beijing, 2011.
[21]黄益民, 刘伟, 刘永寿, 等. 充液管道模态的参数灵敏度及其共振可靠性分析[J]. 振动与冲击, 2010, 29(1): 193-195.
HUANG Yimin, LIU Wei, LIU Yongshou, et al. Parameter sensitivity and resonance reliability of a fluid-filled pipeline[J]. Journal of Vibration and Shock, 2010, 29(1): 193-195.
[22]MAKARYANTS G, PROKOFIEV A, SHAKHMATOV E. Vibroacoustics analysis of punching machine hydraulic piping[J]. Procedia Engineering, 2015, 106: 17-26.
[23]姜峰, 郑运虎, 梁瑞, 等. 海洋立管湿模态振动分析[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 159-166.
JIANG Feng, ZHENG Yunhu, LIANG Rui, et al. An analysis of the wet modal vibration of marine riser[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5): 159-166.
[24]姚耀中, 林立. 潜艇机械噪声控制技术的现状与发展[J]. 舰船科学技术, 2006, 28(增刊2): 3-8.
YAO Yaozhong, LIN Li. A review of control of mechanical noise for submarines[J]. Ship Science and Technology, 2006, 28(Sup 2): 3-8.
[25]张皓, 李东升, 李宏男. 有限元模型修正研究进展:从线性到非线性[J]. 力学进展, 2019, 49(1): 542-575.
ZHANG Hao, LI Dongsheng, LI Hongnan. Recent progress on finite element model updating: from linearity to nonlinearity[J]. Advances in Mechanics, 2019, 49(1): 542-575.
[26]CAO J, ZHENG H, LIU Y. Method suitable for updating the boundary condition of continuous beam bridges[J]. IOP Conference Series: Materials Science and Engineering, 2017, 245:022009.
[27]施洲, 赵人达. 基于模态参数的梁桥结构模型边界条件参数修正[J]. 铁道学报, 2012, 34(8): 103-108.
SHI Zhou, ZHAO Renda. Updating of bounday conditions of beam bridge structure based on mode parameters[J]. Journal of the China Railway Society, 2012, 34(8): 103-108.
[28]邹向农, 龙俊贤, 阳德高, 等. 考虑边界约束条件的悬索桥有限元模型修正研究[J]. 铁道科学与工程学报, 2019, 16(5): 1223-1230.
ZOU Xiangnong, LONG Junxian, YANG Degao, et al. Finite element model updating for a suspension bridge considering the boundary constraint conditions[J]. Journal of Railway Science and Engineering, 2019, 16(5): 1223-1230.
[29]NTOTSIOS E, PAPADIMITRIOU C. Multi-objective optimization algorithms for finite element model updating[C]. Proceedings of ISMA, 2008.
[30]JAISHI B, REN W X. Finite element model updating based on eigenvalue and strain energy residuals using multiobjective optimisation technique[J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2295-2317.
[31]赵经文, 王宏钰. 结构有限元分析[M]. 2版. 北京: 科学出版社, 2001.
[32]ZIENKIEWICZ O, NEWTON R. Coupled vibration of structure submerged in a compressible fluid[C]. Proceedings of the Symposium on Finite Element Techniques, Stuttgart, 1969.
[33]安伟刚. 多目标优化方法研究及其工程应用[D]. 西安: 西北工业大学, 2005.
[34]DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.


PDF(2389 KB)

Accesses

Citation

Detail

段落导航
相关文章

/