平尾模型连续变速压颤振试验方法及数值计算研究

刘南,易家宁,王冬,侯良学,杨希明

振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 11-17.

PDF(2147 KB)
PDF(2147 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 11-17.
论文

平尾模型连续变速压颤振试验方法及数值计算研究

  • 刘南1,2,易家宁1,2,王冬1,2,侯良学1,2,杨希明1,2
作者信息 +

Continuous varying dynamic pressure wind tunnel test method and numerical calculation of flutter characteristics of horizontal tail model

  • LIU Nan1,2, YI Jianing1,2, WANG Dong1,2, HOU Liangxue1,2, YANG Ximing1,2
Author information +
文章历史 +

摘要

为了提升暂冲式风洞跨声速颤振试验效率和安全性,基于自回归滑动平均(auto-regressive moving average,ARMA)系统辨识方法建立了一套高效颤振高效预测方法,基于补偿解耦和专家PID形成FL-60风洞定马赫数连续变速压流场控制技术。将ARMA系统辨识方法通过国际标模AGARD445.6机翼进行验证,颤振速压和频率计算结果与CFD/CSD耦合计算结果差别不超过4%。然后通过风洞流场调试验证FL-60风洞连续变速压流场控制,速压变化线性度高,马赫数控制精度在±0.003。最后通过平尾模型连续变速压颤振试验进行综合验证,阶梯和连续变速压两种试验方式得到的颤振速压差别小于2%,颤振边界计算结果与风洞试验吻合较好,提出的数值方法在试验前可以对车次安排起到良好的指导意义。

Abstract

In order to improve efficiency and safety of transonic flutter tests in a temporary impulse wind tunnel, an efficient flutter prediction method was established based on the auto-regressive moving average (ARMA) system identification method. Based on compensation decoupling and expert PID, a constant Mach number continuous variable pressure flow field control technology was developed for the FL-60 wind tunnel. Firstly, the ARMA system identification method was verified with the international standard model AGARD445.6 wing, and it was shown that the difference between the calculation results for flutter velocity pressure and frequency and those with the CFD/CSD coupled method is not more than 4%. Then, the flow field of the FL-60 wind tunnel was debugged to verify the continuous variable pressure flow field control of the FL-60 wind tunnel, and it was shown that velocity pressure variation has high linearity and the control accuracy of Mach number is ± 0.003. Finally, flutter tests of the flat tail model with continuous varying velocity pressure were conducted, and the results showed that the difference between flutter velocity pressures obtained by step tests and continuous varying velocity pressure tests is less than 2%; the flutter boundary calculation results agree well with those of wind tunnel tests; the proposed numerical method can provide a good guidance for test arrangement before test.

关键词

颤振 / 风洞试验 / 系统辨识 / 连续变速压

Key words

flutter / wind-tunnel test / system identification / continuous varying velocity pressure

引用本文

导出引用
刘南,易家宁,王冬,侯良学,杨希明. 平尾模型连续变速压颤振试验方法及数值计算研究[J]. 振动与冲击, 2021, 40(15): 11-17
LIU Nan, YI Jianing, WANG Dong, HOU Liangxue, YANG Ximing. Continuous varying dynamic pressure wind tunnel test method and numerical calculation of flutter characteristics of horizontal tail model[J]. Journal of Vibration and Shock, 2021, 40(15): 11-17

参考文献

[1]军用飞机结构强度规范第7部分: 气动弹性:GJB67.7A—2008[S]. 北京: 总装备部军标出版发行部, 2008.
[2]COLE S R, NOLL T E, PERRY B. Transonic dynamic tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft, 2003, 40(5): 820-831.
[3]
段静波, 江涛. 带外挂机翼颤振分析的传递函数方法[J]. 振动与冲击, 2017, 36(10): 109-116.
DUAN Jingbo, JIANG Tao. Transfer function method for the flutter of aircraft wings with an external store[J]. Journal of Vibration and Shock, 2017, 36(10): 109-116.
[4]
仲继泽, 徐自力. 基于动网格降阶算法的机翼颤振边界预测[J]. 振动与冲击, 2017, 36(4): 185-191.
ZHONG Jize, XU Zili. Wing flutter prediction using a reduced dynamic mesh method[J]. Journal of Vibration and Shock, 2017, 36(4): 185-191.
[5]
陈千一, 窦忠谦, 周铮, 等. 机翼跨音速风洞颤振试验模型的计算分析[J]. 振动与冲击, 2017, 36(7): 99-103.
CHEN Qianyi, DOU Zhongqian, ZHOU Zheng, et al. Numerical analysis of flutter test model of a wing in a transonic wind tunnel[J]. Journal of Vibration and Shock, 2017, 36(7): 99-103.
[6]
侯良学, 张戈, 刘南, 等. 基于风洞试验模型的跨声速颤振研究[J]. 振动与冲击, 2019, 38(13): 236-241.
HOU Liangxue, ZHANG Ge, LIU Nan, et al. Transonic flutter based on wind tunnel test model[J]. Journal of Vibration and Shock, 2019, 38(13): 236-241.
[7]
郭洪涛, 闫昱, 余立, 等. 高速风洞连续变速压颤振试验技术研究[J]. 试验流体力学, 2015, 29(5): 72-77.
GUO Hongtao, YAN Yu, YU Li, et al. Research on flutter test technology of continuously adjusting dynamical pressure in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 72-77.
[8]PEARSON R K. Nonlinear input/output modelling[J]. Journal of Process Control, 1995, 5(4): 197-211.
[9]
张伟伟, 叶正寅. 基于非定常气动力辨识技术的气动弹性数值模拟[J]. 航空学报, 2007, 27(4): 579-583.
ZHANG Weiwei, YE Zhengyin. Numerical simulation of aeroelasticity basing on identification technology of unsteady aerodynamic load[J]. Journal of Astronautics, 2006, 27(4): 579-583.
[10]
聂雪媛, 刘中玉, 杨国伟. 基于CFD气动力辨识模型的气动弹性数值计算[J]. 振动与冲击, 2014, 33(20): 20-24.
NIE Xueyuan, LIU Zhongyu, YANG Guowei. Identification of unsteady aerodynamic CFD-based model for numerical aeroelastic analysis[J]. Journal of Vibration and Shock, 2014, 33(20): 20-24.
[11]YATES E C, LAND N S, FOUGHNER J T. Measured and calculated subsonic and transonic flutter characteristics of a 45° sweptback wing planform in air and in Freon-12 in the Langley transonic dynamics tunnel[R]. Washington: NASA, 1963.
[12]DOGGETT ROBERT V. Some observations on the Houbolt-Rainey and Peak-Hold methods of flutter onset prediction[R]. Washington: NASA, 1990.

PDF(2147 KB)

495

Accesses

0

Citation

Detail

段落导航
相关文章

/