橡胶自密实混凝土疲劳断裂全过程声发射特征辨识参量试验研究

陈徐东,王佳佳,田华轩

振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 129-136.

PDF(2816 KB)
PDF(2816 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 129-136.
论文

橡胶自密实混凝土疲劳断裂全过程声发射特征辨识参量试验研究

  • 陈徐东,王佳佳,田华轩
作者信息 +

Tests for acoustic emission characteristic recognition parameters of rubber self-compacting concrete in fatigue fracture process

  • CHEN Xudong, WANG Jiajia, TIAN Huaxuan
Author information +
文章历史 +

摘要

废旧轮胎日益增多带来严重的环境问题,将废旧轮胎橡胶颗粒作为混凝土骨料能够减少污染和减少天然骨料的使用。采用液压闭环伺服材料试验机MTS322试验装置(material testing system,MTS)对橡胶自密实混凝土梁进行了静态弯拉试验和不同加载工况下的疲劳弯拉试验。对橡胶自密实混凝土梁在三点弯作用下的断裂性能进行了系统地研究,并考虑了橡胶自密实混凝土梁在不同加载应力水平和应力比下的疲劳破坏规律。讨论了应力场强度因子与断裂韧度的比值与疲劳次数的对数之间的数学关系,建立了橡胶自密实混凝土的疲劳损伤预测模型。试验过程中还采用声发射技术实时测量了循环荷载作用下橡胶自密实混凝土梁内部的声发射信号,对比了不同加载应力水平和应力比下橡胶自密实混凝土梁内部裂缝发展的特征,发现了橡胶自密实混凝土梁内部裂缝的生长分为三个阶段,应力水平越低的情况下,橡胶自密实混凝土梁内部疲劳损伤程度越严重。

Abstract

More and more waste tires bring serious environmental problems. Taking waste tire rubber particles as concrete aggregate can reduce pollution and the use of natural aggregate. Here, static bending-tensile tests and fatigue bending-tensile tests under different loadings were conducted for rubber self-compacting concrete beams using the hydraulic closed loop servo material testing machine MTS322. The fracture behavior of rubber self-compacting concrete beams under 3-point bending was studied systematically, and their fatigue failure laws under different loading stress levels and stress ratios were discussed to obtain the mathematical relationship between the ratio of stress field strength factor to fracture toughness and the logarithm of fatigue times. The fatigue damage prediction model of rubber self-compacting concrete was established. In test process, the acoustic emission (AE) technique was used to measure AE signals inside rubber self-compacting concrete beam under cyclic load in real time. The characteristics of crack development in rubber self-compacting concrete beam under different loading stress levels and stress ratios were compared. It was shown that the growth of inner cracks of rubber self-compacting concrete beam is divided into three stages; the lower the loading stress level, the more serious the fatigue damage degree inside rubber self-compacting concrete beam.

关键词

橡胶自密实混凝土 / 循环荷载 / 损伤预测模型 / 疲劳寿命 / 声发射

Key words

rubber self-compacting concrete / cyclic loading / damage prediction model / fatigue life / acoustic emission (AE)

引用本文

导出引用
陈徐东,王佳佳,田华轩. 橡胶自密实混凝土疲劳断裂全过程声发射特征辨识参量试验研究[J]. 振动与冲击, 2021, 40(15): 129-136
CHEN Xudong, WANG Jiajia, TIAN Huaxuan. Tests for acoustic emission characteristic recognition parameters of rubber self-compacting concrete in fatigue fracture process[J]. Journal of Vibration and Shock, 2021, 40(15): 129-136

参考文献

[1]YEHIA S, DOUBA A E, ABDULLAHI O, et al. Mechanical and durability evaluation of fiber-reinforced self-compacting concrete[J]. Construction and Building Materials, 2016, 121:120-133.
[2]ELAHI A, BASHEER P A M, NANUKUTTAN S V, et al. Mechanical and durability properties of high performance concretes containing supplementary cementitious materials[J]. Construction and Building Materials, 2010, 24(3):292-299.
[3]LING T C, POON C S. Properties of architectural mortar prepared with recycled glass with different particle sizes[J]. Materials and Design, 2011, 32(5):2675-2684.
[4]LING T C, POON C S, KOU S C. Feasibility of using recycled glass in architectural cement mortars[J]. Cement and Concrete Composites, 2011, 33(8):848-854.
[5]LING T C, POON C S, KOU S C. Influence of recycled glass content and curing conditions on the properties of self-compacting concrete after exposure to elevated temperatures[J]. Cement and Concrete Composites, 2012, 34(2):265-272.
[6]帅美新, 余建杰. 废旧橡胶集料自密实混凝土力学性能研究[J]. 水利规划与设计, 2016(9):74-77.
SHUAI Meixin, YU Jianjie. Mechanical properties of rubber self-compacting concrete[J]. Water Resources Planning and Design, 2016, 24(9): 74-77.
[7]KHALOO ALI R, DEHESTANI M, RAHMATABADI P. Mechanical properties of concrete containing a high volumernof tire-rubber particles[J]. Waste Management, 2008, 28(12):2472-2482.
[8]TAHA M M R, EL-DIEB A S, EL-WAHAB M A A, et al. Mechanical, fracture, and microstructural investigations of rubber concrete[J]. Journal of Materials in Civil Engineering, 2008, 20(10): 640-649.
[9]SUKONTASUKKUL P, CHAIKAEW C. Properties of concrete pedestrian block mixed with crumb rubber[J]. Construction and Building Materials, 2006, 20(7): 450-457.
[10]NAITO C, STATES J, JACKSON C, et al. Assessment of crumb rubber concrete for flexural structural members[J]. Journal of Materials in Civil Engineering, 2014,26(10):554-555.
[11]马昆林, 龙广成, 谢友均,等. 橡胶颗粒对自密实混凝土性能的影响[J]. 硅酸盐学报, 2014, 42(8):966-973.
MA Kunlin, LONG Guangcheng, XIE Youjun, et al. Effect of rubber particles on properties of self-compacting concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(8):966-973.
[12]龙广成, 马昆林, 谢友均. 橡胶集料对混凝土抗压强度的降低效应[J]. 建筑材料学报, 2013(5):24-28.
LONG Guangcheng, MA Kunlin, XIE Youjun, et al. Effect of rubber aggregate on reduction of compressive strength of concrete[J]. Journal of Building Materials, 2013(5):24-28.
[13]郝贠洪, 樊磊, 韩燕, 等. 冲击荷载作用下橡胶混凝土的损伤研究[J]. 振动与冲击, 2019, 38(17):73-80.
HAO Yuanhong, FAN Lei, HAN Yan, et al. Damage of rubber concrete under impact loads[J]. Journal of Vibration and Shock, 2019, 38(17):73-80.
[14]TURATSINZE A, BONNET S, GRANJU J L. Mechanical characterisation of cement-based mortar incorporating rubber aggregates from recycled worn tyres[J]. Building and Environment, 2005, 40(2):221-226.
[15]LING T C, NOR H M, LIM S K. Using recycled waste tyres in concrete paving blocks[J]. Proceedings of the Institution of Civil Engineers, 2010, 163:37-45.
[16]ZHENG L, HUO X S, YUAN Y. Strength, modulus of elasticity, and brittleness index of rubberized concrete[J]. Journal of Materials in Civil Engineering, 2008, 20(11):692-699.
[17]WONG S F, TING S K. Use of recycled rubber tires in normal-and high-strength concretes[J]. Aci Materials Journal, 2009, 106(4):325-332.
[18]SUKONTASUKKUL P, CHAIKAEW C. Properties of concrete pedestrian block mixed with crumb rubber[J]. Construction and Building Materials, 2006, 20(7):450-457.
[19]GUPTA T, SHARMA R K, CHAUDHARY S. Influence of waste tyre fibers on strength, abrasion resistance and carbonation of concrete[J]. Scientia Iranica, 2015, 22(4):1481-1489.
[20]SIBAL A, DAS A, PANDEY B B. Flexural fatigue characteristics of asphalt concrete with crumb rubber[J]. International Journal of Pavement Engineering, 2000, 1(2):119-132.
[21]罗素蓉, 陈伟妹, 王雪芳. 橡胶自密实混凝土断裂性能试验研究[J]. 水利学报, 2015, 46(2):217-222.
LUO Surong, CHEN Weimei, WANG Xuefang. Fracture properties of rubberized self-compacting concrete[J]. Journal of Hydraulic Engineering, 2015, 46(2):217-222.
[22]王岩, 吴胜兴, 周继凯, 等. 小湾拱坝湿筛与三级配混凝土静态弯拉声发射特性[J]. 振动与冲击, 2011, 30(5):17-24.
WANG Yan, WU Shengxing, ZHOU Jikai, et al. Acoustic emission characteristics of wet sieving concrete and three-graded one in xiaowan arch dam under static flexural-tensile[J]. Journal of Vibration and Shock, 2011, 30(5):17-24.
[23]SHAH S P. Determination of fracture parameters (KIc and CTODc) of plain concrete using three-point bend tests[J]. Materials and Structures, 1990, 23(6):457-460.
[24]GUTENBERG B, RICHTER C F. Frequency of earthquakes in california[J]. Bulletin of the Seismological Society of America, 1994, 34(4):185-188.

PDF(2816 KB)

354

Accesses

0

Citation

Detail

段落导航
相关文章

/