考虑关联荷载验证时变抗力的桥梁结构可靠度评估方法

金聪鹤,钱永久,徐望喜,黄俊豪

振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 146-155.

PDF(2553 KB)
PDF(2553 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 146-155.
论文

考虑关联荷载验证时变抗力的桥梁结构可靠度评估方法

  • 金聪鹤,钱永久,徐望喜,黄俊豪
作者信息 +

Reliability evaluation method of bridge structure considering time-varying resistance verified by correlated load

  • JIN Conghe, QIAN Yongjiu, XU Wangxi, HUANG Junhao
Author information +
文章历史 +

摘要

作用于桥梁结构的荷载效应存在时间相关性。基于多维随机变量的Copula随机数矩阵和Monte Carlo数值模拟方法,提出了服从平稳随机过程的关联荷载既有桥梁时变可靠度评估方法。采用服从正态分布的历史荷载信息作为验证荷载,基于相邻荷载效应的Pearson相关系数矩阵分别构造n元Gaussian Copula和t-Copula随机数行向量,讨论了基于线性相关的荷载时间关联性强弱对桥梁时变抗力验证作用的影响。对某钢筋混凝土梁桥进行时变可靠度分析,结果表明:考虑荷载过程的时间关联性会降低其对桥梁抗力的验证作用。相关性越强,验后抗力的均值提升和标准差降低越小,验证作用越不显著;t-Copula函数的验证效果低于Gaussian Copula函数。对在役桥梁而言,已服役历史验证荷载过程的时间离散程度越高,对后继服役期结构的安全性能评估越不利。使用Copula随机数矩阵法,若采用t-Copula函数生成随机数行向量,自由度df的取值建议在1~20之间。

Abstract

The load effect on bridge structure is time-dependent. Here, based on Copula random number matrix of multi-dimensional random variable and Monte Carlo numerical simulation method, a time-varying reliability evaluation method for existing bridges with correlated load subject to stationary random processwas proposed. Taking historical load information subject to normal distribution as verification load, based on Pearson correlation coefficient matrix of adjacent load effects, N-element Gaussian Copula and t-Copula random number row vectors were constructed, respectively, and influences of load time correlation based on linear correlation on verification effect of bridge time-varying resistance were discussed. The time-varying reliability analysis was performed for a reinforced concrete beam bridge. The results showed that considering time correlation of load process can reduce its verification effect on bridge resistance; the stronger the correlation, the smaller the increase in mean value of resistance after verification and the decrease in its standard deviation, and the lesssignificant the verification effect; the verification effect of t-Copula function is lower than that of Gaussian Copula function; for bridges in service, the higher the time dispersion degree of load process verified by service history, the more unfavorable to the safety performance evaluation of structure in subsequent service period; using Copula random number matrix method proposed here, if t-Copula function is used to generate random number row vector, the value of degree of freedom df is suggested to be 1~20.

关键词

时变可靠度 / 平稳随机过程 / 荷载关联性 / 验证荷载 / 正态分布 / Copula随机数矩阵

Key words

time-dependent reliability / stationary random process / load correlativity / verification load / normal distribution / Copula randomnumber matrix

引用本文

导出引用
金聪鹤,钱永久,徐望喜,黄俊豪. 考虑关联荷载验证时变抗力的桥梁结构可靠度评估方法[J]. 振动与冲击, 2021, 40(15): 146-155
JIN Conghe, QIAN Yongjiu, XU Wangxi, HUANG Junhao. Reliability evaluation method of bridge structure considering time-varying resistance verified by correlated load[J]. Journal of Vibration and Shock, 2021, 40(15): 146-155

参考文献

[1]FABER M H, VAL D V, STEWART M G. Proof load testing for bridge assessment and upgrading [J]. Engineering Structures, 2000, 22: 1677-1689.
[2]王草,李全旺. 考虑非平稳车载过程的在役桥梁时变可靠度分析[J]. 工程力学, 2016, 33(3): 18-23.
WANG Cao, LI Quanwang. Time-dependent reliability of existing bridges considering non-stationary load process [J]. Engineering Mechanics, 2016, 33(3): 18-23.
[3]王草. 既有结构时变可靠度分析的数学方法[D]. 北京:清华大学, 2015.
[4]叶新一,王草,李全旺. 桥梁结构时变可靠度计算的新方法[J]. 工程力学, 2018, 35(11): 86-91.
YE Xinyi, WANG Cao, LI Quanwang. New method for calculation of time-dependent reliability of RC bridges [J]. Engineering Mechanics, 2018, 35(11): 86-91.
[5]工程结构可靠性设计统一标准:GB 50153—2008[S]. 北京:中国建筑工业出版社, 2008.
[6]MORI Y, ELLINGWOOD B R. Reliability-based service-life assessment of aging concrete structures [J]. Journal of Structural Engineering, 1993, 119(5): 1600-1621.
[7]禹智涛. 既有钢筋混凝土桥梁可靠性评估的若干问题研究[D]. 广州:华南理工大学, 2003.
[8]刘月飞. 考虑失效模式和验证模式相关性的桥梁结构体系可靠度分析[D]. 哈尔滨:哈尔滨工业大学, 2015.
[9]索清辉,钱永久,伍建强,等. 既有结构已服役荷载对可靠度评估结果的验证影响[J]. 计算力学学报, 2007, 24(3): 323-327.
SUO Qinghui, QIAN Yongjiu, WU Jianqiang, et al. Proof influence of prior service load to the existing structure reliability [J]. Chinese Journal of Computational Mechanics, 2007, 24(3): 323-327.
[10]FUJINO Y, LIND N C. Proof load factors and reliability [J]. Journal of Structural Engineering, 1977, 103(4): 853-870.
[11]樊学平. 基于验证荷载和监测数据的桥梁可靠性修正与贝叶斯预测[D]. 哈尔滨:哈尔滨工业大学, 2014.
[12]李全旺,王草,张龙. 考虑结构劣化和荷载历史的既有桥梁承载力更新[J]. 清华大学学报(自然科学版), 2015, 55(1): 8-13.
LI Quanwang, WANG Cao, ZHANG Long. Updating for bearing capacity of existing bridges considering structural deterioration and loading history [J]. Journal of Tsinghua University (Sci. and Tech.), 2015, 55(1): 8-13.
[13]STEWART M G, VAL D V. Role of load history in reliability-based decision analysis of aging bridges [J]. Journal of Structural Engineering, 1999, 125: 776-783.
[14]潘小旺,邹良浩,梁枢果,等. 基于极值相关性的超高层建筑风荷载组合研究[J]. 建筑结构学报, 2020, 41(2): 83-91.
PAN Xiaowang, ZOU Lianghao, LIANG Shuguo, et al. Wind load combination method for high-rise buildings based on extreme-value correlation [J]. Journal of Building Structures, 2020, 41(2): 83-91.
[15]李全旺,王草. 荷载随机过程相关性对结构时变可靠度的影响[J]. 清华大学学报(自然科学版), 2014, 54(10): 1316-1320.
LI Quanwang, WANG Cao. Effect of correlation of stochastic loadings on the time-dependent reliability of structures [J]. Journal of Tsinghua University (Sci. and Tech.), 2014, 54(10): 1316-1320.
[16]TORIUMI R, KATSUCHI H, FURUYA N. A study on spatial correlation of natural wind [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 87: 203-216.
[17]CHALOULOS G, LYGEROS J. Effect of wind correlation on aircraft conflict probability [J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6): 1742-1752.
[18]赵丁苏,陈隽. 单人三向连续步行荷载相关性及建模研究[J]. 振动与冲击, 2019, 38(11): 166-172.
ZHAO Dingsu, CHEN Jun. Tests for correlation and modeling of individual 3-D continuous wailing load [J]. Journal of Vibration and Shock, 2019, 38(11): 166-172.
[19]ENRIGHT M P, FRANGOPOL D M. Service-life prediction of deteriorating concrete bridges [J]. Journal of Structural Engineering, 1998, 124(3): 309-317.
[20]秦权,杨小刚. 退化结构时变可靠度分析[J]. 清华大学学报(自然科学版), 2005, 45(6): 733-736.
QIN Quan, YANG Xiaogang. Time-dependent reliability analysis of deteriorating structures [J]. Journal of Tsinghua University (Sci. and Tech.), 2015, 45(6): 733-746.
[21]秦权,贺瑞,杨小刚. 在时变结构可靠度领域中有必要澄清的一个错误概念[J]. 工程力学, 2009, 26(8): 201-204.
QIN Quan, HE Rui, YANG Xiaogang. Clarification of a wrong concept in the field of time-varying structural reliability [J]. Engineering Mechanics, 2009, 26(8): 201-204.
[22]索清辉. 基于概率理论的既有桥梁承载力评估方法研究[D]. 成都:西南交通大学, 2005.
[23]HALL W B. Reliability of service proven structures [J]. Journal of Structural Engineering, 1988, 114(3): 608-624.
[24]NELSON R B. An introduction to copulas [M]. Springers Series in Statistics, 2005.
[25]宋帅,钱永久,吴刚. 基于多元Copula函数的桥梁体系地震易损性分析方法研究[J]. 振动与冲击, 2017, 36(9): 122-129.
SONG Shuai, QIAN Yongjiu, WU Gang. Seismic fragility analysis of a bridge system based on multivariate Copula function [J]. Journal of Vibration and Shock, 2017, 36(9): 122-129.
[26]陈建兵,陶金聚,任晓丹,等. 基于Copula理论的混凝土受压本构全曲线参数相关性研究[J]. 土木工程学报, 2020, 53(7): 52-63.
CHEN Jianbing, TAO Jinju, REN Xiaodan, et al. Research on the dependence between parameters in complete stress-strain constitutive curve of concrete based on copula theory [J]. China Civil Engineering Journal, 2020, 53(7): 52-63.
[27]LIU Y, FAN X. Gaussian copula-Bayesian dynamic linear model-based time-dependent reliability prediction of bridge structures considering non-linear correlation between failure modes [J]. Advances in Mechanical Engineering, 2016, 8(11): 1-15.
[28]吴刘仓,张舒宇,詹金龙. 基于t分布下混合联合位置与尺度模型的参数估计[J]. 应用数学, 2016, 29(4): 818-825.
WU Liucang, ZHANG Shuyu, ZHAN Jinlong. Parameters estimation of mixture regression for joint local and scale models based on the t distribution[J]. Mathematical Application, 2016, 29(4): 818-825.
[29]李植淮,李春前,孙健康,等.基于GPD模型的车辆荷载效应极值估计[J]. 工程力学, 2012, 29(增刊1): 166-171.
LI Zhihuai, LI Chunqian, SUN Jiankang, et al. Estimation of extreme vehicle load effect based on GPD model [J]. Engineering Mechanics, 2012, 29(Sup1): 166-171.
[30]公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG 3362—2018[S]. 北京:人民交通出版社, 2018.

PDF(2553 KB)

336

Accesses

0

Citation

Detail

段落导航
相关文章

/