复合材料波纹板准静态轴压性能试验及数值模拟

肖培,苏璇,牟浩蕾,解江,冯振宇

振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 156-164.

PDF(3376 KB)
PDF(3376 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 156-164.
论文

复合材料波纹板准静态轴压性能试验及数值模拟

  • 肖培,苏璇,牟浩蕾,解江,冯振宇
作者信息 +

Quasi-static axial compression performance tests and numerical simulation for composite corrugated plate

  • XIAO Pei, SU Xuan, MOU Haolei, XIE Jiang, FENG Zhenyu
Author information +
文章历史 +

摘要

以[+45/-45]4s和[0/+45/-45/0]2s碳纤维增强复合材料波纹板为研究对象,通过准静态轴压试验获得其失效形貌及载荷-位移曲线;通过CT扫描分析其破坏机理,基于吸能特性评价指标进一步研究其吸能特性。针对[0/+45/-45/0]2s波纹板,建立考虑层间模型的多层壳模型进行轴压仿真,通过对比失效形貌、载荷-位移曲线及吸能特性评价指标来验证有限元模型。试验结果表明:[+45/-45]4s波纹板出现整体失稳现象,材料利用率较低导致其吸能特性较差,且试验获得的比吸能的离散系数大于15%,试验重复性较差。[0/+45/-45/0]2s波纹板为典型的层束张开失效模式,材料利用率较高导致其吸能特性较好,吸能特性评价指标的离散系数均小于15%,具有良好的轴压稳定性与可重复性。在±45°纤维铺层中增加0°纤维铺层,可改变其轴压失效模式,并显著提升其轴压吸能特性。仿真结果表明:多层壳模型能较好地复现[0/+45/-45/0]2s波纹板轴压过程及层束张开失效模式;同时仿真获得的比吸能比试验均值高2.27%,能较好地复现[0/+45/-45/0]2s波纹板轴压吸能特性,从而验证了多层壳模型。

Abstract

Here, the failure morphology and load-displacement curve of [+45/-45]4s and [0/+45/-45/0]2s carbon fiber reinforced composite corrugated plates were obtained with quasi-static axial compression tests. Their failure mechanism was analyzed using CT scanning. Their energy absorption characteristics were further studied with evaluation indexes of energy absorption characteristics. For [0/+45/-45/0]2s corrugated plate, the multi-layer shell finite element (FE) model considering interlayer model was established to do axial compression simulation. The FE model was verified through comparing the simulation results of failure morphology, load-displacement curve and energy absorption characteristics evaluation indexes with test results of those. The test results showed that the overall instability of [+45/-45]4s corrugated plate occurs, and the lower material utilization rate leads to poorer energy absorption characteristics, the dispersion coefficient of the specific energy absorption (SEA) obtained in tests is more than 15%, so the test repeatability is poorer; [0/+45/-45/0]2s corrugated plate is a typical failure mode of layer-bundle opening, and the higher material utilization rate leads to better energy absorption characteristics, dispersion coefficients of energy absorption evaluation indexes all are less than 15%, so this plate has good axial compression stability and repeatability, adding 0° fiber layer into ±45° fiber layers can change the plate’s axial compression failure mode and significantly improve its axial compression energy absorption characteristics. The simulation results showed that the multi-layer shell FE model can reproduce axial compression process and layer-bundle opening failure mode of [0/+45/-45/0]2s corrugated plate; the SEA obtained using simulation is 2.27% higher than the test average value, so simulation can better reproduce axial compression energy absorption characteristics of [0/+45/-45/0]2s corrugated plate to verify the multi-layer shell model.

关键词

复合材料波纹板 / 准静态轴压试验 / 失效模式 / 吸能特性 / 多层壳模型

Key words

composite corrugated plate / quasi-static axial compression / failure mode / energy absorption characteristics / multi-layer shell model

引用本文

导出引用
肖培,苏璇,牟浩蕾,解江,冯振宇. 复合材料波纹板准静态轴压性能试验及数值模拟[J]. 振动与冲击, 2021, 40(15): 156-164
XIAO Pei, SU Xuan, MOU Haolei, XIE Jiang, FENG Zhenyu. Quasi-static axial compression performance tests and numerical simulation for composite corrugated plate[J]. Journal of Vibration and Shock, 2021, 40(15): 156-164

参考文献

[1]杨乃宾, 梁伟. 大飞机复合材料结构设计导论[M]. 北京: 航空工业出版社, 2009: 34-37.
[2]HEIMBS S, HOFFMANN M, WAIMER M, et al. Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations[J]. International Journal of Crashworthiness, 2013, 18(4): 406-422.
[3]MOU H L, XIE J, SU X, et al. Crashworthiness experiment and simulation analysis of composite thin-walled circular tubes under axial crushing[J]. Mechanics of Composite Materials, 2019, 55(1): 121-134.
[4]REN Y, JIANG H, JI W, et al. Improvement of progressive damage model to predicting crashworthy composite corrugated plate[J]. Applied Composite Materials, 2018, 25(1): 45-66.
[5]RABIEE A, GHASEMNEJAD H. Progressive crushing of polymer matrix composite tubular structures: review [J]. Open Journal of Composite Materials, 2017(1):14-48.
[6]GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98: 106-123.
[7]HEIMBS S, STROBL F, MIDDENDORF P, et al. Integration of a composite crash absorber in aircraft fuselage vertical struts[J]. International Journal of Vehicle Structures & Systems,2011,3(2): 87-95.
[8]牟浩蕾, 张雪晗, 宋东方, 等. 复合材料层合结构破坏机理及压溃吸能特性分析[J]. 振动与冲击, 2018, 37(22): 194-200.
MOU Haolei, ZHANG Xuehan, SONG Dongfang, et al. Damage mechanism and energy-absorbing characteristics of composite laminated structures[J]. Journal of Vibration and Shock, 2018, 37(22): 194-200.
[9]冯振宇, 解江, 迟琪琳, 等. 湿热环境对复合材料单向板拉伸性能的影响[J]. 高分子材料科学与工程, 2018, 34(11): 37-43.
FENG Zhenyu, XIE Jiang, CHI Qilin, et al. Influence of hygrothermal environment on tensile property of unidirectional composite laminates [J]. Polymer Materials Science and Engineering, 2018, 34(11): 37-43.
[10]冯振宇, 马骢瑶, 霍雨佳, 等. 湿热环境对CFRP层板压缩性能的影响[J]. 高分子材料科学与工程, 2018, 34(8): 48-54.
FENG Zhenyu, MA Congyao, HUO Yujia, et al. Hygrothermal effects on compression property of CFRP laminates[J]. Polymer Materials Science and Engineering, 2018, 34(8): 48-54.
[11]SIROMANI D, AWERBUCH J, TAN T M. Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression[J]. Composites Part B: Engineering, 2014, 64: 50-58.
[12]MAHDI E, SEBAEY T A. An experimental investigation into crushing behavior of radially stiffened GFRP composite tubes[J]. Thin-Walled Structures, 2014, 76:8-13.
[13]解江, 马骢瑶, 霍雨佳, 等. 纤维铺层角度对复合材料薄壁圆管轴向压溃吸能特性影响研究[J]. 振动与冲击, 2018, 37(20): 200-206.
XIE Jiang, MA Congyao, HUO Yujia, et al. Effect of ply orientations on energy-absorbing characteristics of composite thin-walled circular tubes under axial compression[J]. Journal of Vibration and Shock, 2018, 37(20): 200-206.
[14]解江, 张雪晗, 苏璇, 等. 铺层顺序对复合材料薄壁圆管轴向压溃吸能特性的影响研究[J]. 工程力学, 2018, 35(6): 231-239.
XIE Jiang, ZHANG Xuehan, SU Xuan, et al. Influence of layer sequence on energy absorption characteristics of thin-walled composite circular tubes under axial compression[J]. Engineering Mechanics, 2018, 35(6): 231-239.
[15]KAKOGIANNIS D, CHUNG K Y S, PALANIVELU S, et al. Response of pultruded composite tubes subjected to dynamic and impulsive axial loading[J]. Composites Part B: Engineering, 2013, 55:537-547. 
[16]MCGREGOR C, VAZIRI R, XIAO X R, et al. Finite element modelling of the progressive crushing of braided composite tubes under axial impact[J]. International Journal of Impact Engineering, 2010, 37(6): 662-672.
[17]XIAO X. Modeling energy absorption with a damage mechanics based composite material model[J]. Journal of Composite Materials, 2009, 43(5):427-444.
[18]冯振宇, 周坤, 裴惠, 等. 复合材料薄壁方管准静态轴向压缩失效机理及吸能特性[J]. 高分子材料科学与工程, 2019, 35(8): 94-104. 
FENG Zhenyu, ZHOU Kun, PEI Hui, et al. Failure mechanism and energy-absorption characteristics of composite thin-walled square tube under quasi-static axial compression load[J]. Polymer Materials Science and Engineering, 2019, 35(8): 94-104.
[19]LIN J S, WANG X, FANG C Q, et al. Collapse loading and energy absorption of fiber-reinforced conical shells[J]. Composites Part B: Engineering, 2015, 74: 178-189. 
[20]JACKSON A, DUTTON S, GUNNION A J, et al. Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing[J]. Composite Structures, 2011, 93(10): 2646-2654.
[21]FENG Z Y, XIE J, SONG S S, et al. The failure mechanism and energy-absorbing characteristics of composite thin-walled C-channels subject to low-speed axial compression [J]. Journal of Composite Materials, 2019, 53(16): 2249-2259. 
[22]解江, 宋山山, 宋东方, 等. 复合材料C型柱轴压失效分析的层合壳建模方法[J]. 航空学报, 2019, 40(2): 127-139. 
XIE Jiang, SONG Shanshan, SONG Dongfang, et al. Stacked shell modeling method for failure analysis of composite C-channels subject to axial compression [J]. Acta Aeronautica ET Astronautica Sinica, 2019, 40(2): 127-139.
[23]RICCIO A, RAIMONDO A, DI CAPRIO F, et al. Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system [J]. Composites Part B: Engineering, 2018(150): 93-103.
[24]JIMNEZ M A, MIRAVETE A, LARROD E, et al. Effect of trigger geometry on energy absorption in composite profiles[J]. Composite Structures, 2000, 48(1): 107-111.
[25]MOU H L, ZOU T C, FENG Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures, 2016(6): 1186-1202.
[26]MOU H L, SU X, XIE J, et al. Parametric analysis of composite sinusoidal specimens under quasi-static crushing[J]. Aeronautical Journal, 2018, 122 (1254): 1244-1262.
[27]JIANG H Y, REN Y R, GAO B H, et al. Numerical investigation on links between the stacking sequence and energy absorption characteristics of fabric and unidirectional composite sinusoidal plate[J]. Composite Structures, 2017,171: 382-402.
[28]REN Y R, JIANG H Y, JI W Y, et al. Improvement of progressive damage model to predicting crashworthy composite corrugated plate[J]. Applied Composite Materials, 2018, 25(1): 45-66.
[29]MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. Crashworthiness of composite thin-walled structural component [M]. Lancaster, Pennsylvania, U.S.A: Technomic Publishing Company. Inc., 1998: 1-248.
[30]FARLEY G, JONES R. Energy-absorption capability of composite tubes and beams[R]. NASA TM 101634, Hampton: NASA Technical Memorandum, 1989. 
[31]HULL D. A unified approach to progressive crushing of fibre-reinforced composite tubes [J]. Composites Science & Technology, 1991, 40(4): 377-421.
[32]GUPTA N, VELMURUGAN R, GUPTA S. An analysis of axial crushing of composite tubes[J]. Journal of Composite Materials, 1997, 31(13): 1262-1286.
[33]PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and triggering modelling[J]. Polymer Testing, 2010, 29(6): 729-741.
[34]郑金鑫, 于增信. 层状纤维圆柱壳轴向压缩破损实验研究[J]. 实验力学, 1999(2): 237-242.
ZHENG Jinxin, YU Zengxin. An experimental study on the progressive damage of fiber laminated cylindrical shells under axial compression[J]. Journal of Experimental Mechanics, 1999(2): 237-242.
[35] 杜星文. 圆柱壳冲击动力学及耐撞性设计[M]. 北京: 科学出版社, 2004: 1-238.
[36]BUSSADORI B P, SCHUFFENHAUER K, SCATTINA A. Modelling of CFRP crushing structures in explicit crash analysis [J]. Composites Part B Engineering, 2014, 60(1):725-735. 
[37]冯振宇, 周建, 张雪晗, 等. 复合材料薄壁圆管压缩吸能机理分析及层叠壳建模方法研究[J]. 振动与冲击, 2017, 36(23): 268-275.
FENG Zhenyu, ZHOU Jian, ZHANG Xuehan, et al. Mechanism analysis and stacked shell modelling study on energy-absorbing characteristics of composite thin-walled circular tubes [J]. Journal of Vibration and Shock, 2017, 36(23): 268-275.
[38]KIANI M, SHIOZAKI H, MOTOYAMA K. Using experimental data to improve crash modeling for composite materials[J]. Composite Materials and Joining Technologies for Composites, 2013(7): 215-226.
[39]MCGREGOR C J, VAZIRI R, XIAO X. Finite element modeling of the progressive crushing of braided composite tubes under axial impact[J]. International Journal of Impact Engineering, 2010(37): 662-672.
[40]XIE J, MOU H L, SU X, et al. Uncertain evaluation of crashworthiness of thin-walled composite structures[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(8): 1238-1248.

PDF(3376 KB)

Accesses

Citation

Detail

段落导航
相关文章

/