考虑流体附加质量的输流管道振动特性分析

肖斌,周玉龙,高超,曹贻鹏,石双霞,刘志刚

振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 182-187.

PDF(893 KB)
PDF(893 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 182-187.
论文

考虑流体附加质量的输流管道振动特性分析

  • 肖斌1,周玉龙1,高超1,曹贻鹏2,石双霞1,刘志刚2
作者信息 +

Analysis of vibration characteristics of pipeline with fluid added mass

  • XIAO Bin1, ZHOU Yulong1, GAO Chao1, CAO Yipeng2, SHI Shuangxia1, LIU Zhigang2
Author information +
文章历史 +

摘要

针对管内流体激励(flow-induced vibrations,FIV)引起的结构振动问题,考虑单向流固耦合作用,通过引入附加质量分析内流流速对结构振动特性的影响。以两端固定支撑输流直管作为研究对象,利用数值方法模拟不同流速下管内的流动状态,获取流体压力系数、湍动能及管道结构位移响应。基于单向耦合振动机理,建立管道流固耦合附加质量模型,采用FEM方法展开结构模态分析,计算流体作用于结构的附加质量和固有频率。数值仿真结果表明:内部流体流速对管道结构振动有较强的耦合作用,流速增加使得耦合附加质量增大,且存在临界流速使管道发生静态屈曲失稳现象。与经验公式对比,该计算结果在10%的误差范围内能更准确地反映流体对结构振动的单向耦合作用。因此,提出的方法能够应用于单向耦合振动问题分析,并为研究流固耦合对结构动力特征影响等管内流动的FIV问题提供思路。

Abstract

Aiming at problems of fluid-induced vibration (FIV) of structures, considering unidirectional fluid-structure interaction (FSI), effects of flow velocity on vibration characteristics of structure were analyzed through introducing added mass. A straight pipeline conveying fluid was taken as the study object, flow states in pipeline under different flow velocities were simulated with numerical method to obtain fluid pressure coefficient, turbulent kinetic energy and displacement response of pipeline structure. Based on the unidirectional coupling vibration mechanism, the pipeline FSI added mass model was established. The FE method was used to do the structural modal analysis, and calculate the structure’s added mass and natural frequencies due to fluid acting on structure. The numerical simulation results showed that pipeline internal fluid velocity has stronger coupling action on pipeline structure vibration, increase in flow velocity makes coupling added mass increase, and there is a critical flow velocity to cause pipeline having static buckling instability; compared with empirical formula, the calculation results here can more accurately reflect the fluid unidirectional coupling action on structural vibration within the error range of 10%; the proposed method can be applied in analysis of unidirectional coupled vibration problems, and provide a way for studying FIV problems in pipeline flow including effects of FSI on dynamic characteristics of structures.

关键词

流固耦合 / 流体附加质量 / 流激振动 / 弯曲固有频率 / 输流管道

Key words

fluid-structure interaction (FSI) / fluid added mass / flow-induced vibration (FIV) / flexural natural frequency / pipeline conveying fluid

引用本文

导出引用
肖斌,周玉龙,高超,曹贻鹏,石双霞,刘志刚. 考虑流体附加质量的输流管道振动特性分析[J]. 振动与冲击, 2021, 40(15): 182-187
XIAO Bin, ZHOU Yulong, GAO Chao, CAO Yipeng, SHI Shuangxia, LIU Zhigang. Analysis of vibration characteristics of pipeline with fluid added mass[J]. Journal of Vibration and Shock, 2021, 40(15): 182-187

参考文献

[1]肖斌, 刘文帅, 高超, 等. 舰船中低频结构噪声源识别方法研究[J]. 哈尔滨工程大学学报, 2015, 36(12): 1596-1602.
XIAO Bin, LIU Wenshuai, GAO Chao, et al. Research on identification source identification methods of low and medium frequency ship structural noise[J]. Journal of Harbin Engineering University, 2015, 36(12): 1596-1602.
[2]PAIDOUSSIS R W G P. Unstable oscillation of tubular cantilevers conveying fluid. I. theory[J]. Proceedings of the Royal Society of London, 1966, 293(1435):512-527.
[3]XIAO B, LU Z D, SHI S X, et al. Volterra-series based equivalent nonlinear system method for subharmonic vibration systems[J]. International Journal of Systems Science, 2019,17, 50(3):479-494.
[4]XIAO B, GAO C, LIU Z. Decoupling analysis on nonlinear system based on the modified generalized frequency response functions[J]. Mechanical Systems and Signal Processing, 2014, 42(1):283-299.
[5]李磊岩, 李华军, 梁丙臣,等. 海底管道管跨段在内外流体作用下的竖向动力特性研究[J]. 中国海洋大学学报(自然科学版), 2005, 35(1):162-166.
LI Leiyan, LI Huajun, LIANG Bingchen, et al. Study on the cross-flow dynamic characteristics of a submarine free span pipeline subjected to internal and external flow[J]. Periodical of Ocean University of China, 2005, 35(1):162-166.
[6]包日东, 闻邦椿. 水下悬跨输流管道动力稳定性的DQ解法[J]. 应用力学学报, 2008(1):98-102.
BAO Ridong, WEN Bangchun. Dynamic stability of underwater suspension pipeline by DQ method[J]. Chinese Journal of Applied Mechanics, 2008(1):98-102.
[7]李占营, 王建军, 邱明星. 航空发动机管路流固耦合振动的固有频率分析[J]. 航空发动机, 2017, 43(1):66-70.
LI Zhanying, WANG Jianjun, QIU Mingxing. Analysis for natural frequencies of pipe conveying fluid considering fluid-structure interaction[J]. Aeroengine, 2017, 43(1):66-70.
[8]秦雷. 航空发动机液压管路系统耦合振动的建模与分析[D]. 沈阳:东北大学, 2011.
[9]范晓宁. 航空发动机液压管路系统耦合振动有限元分析[D]. 沈阳:东北大学, 2014.
[10]孟丹, 郭海燕, 徐思朋. 输流管道的流体诱发振动稳定性分析[J]. 振动与冲击, 2010, 29(6):87-90.
MENG Dan, GUO Haiyan, XU Sipeng. Stability analysis of fluid-induced vibration in pipeline[J]. Journal of Vibration and Shock, 2010, 29(6):87-90.
[11]李继世, 张大义, 王立, 等. 考虑流体介质影响的管路模态特性分析[J]. 航空动力学报, 2019, 34(3):166-172.
LI Jishi, ZHANG Dayi, WANG Li, et al. Analysis of pipeline modal characteristics considering the influence of fluid media[J]. Journal of Aerospace Power, 2019, 34(3):166-172.
[12]MAHERI M R, SEVERN R T. Experimental added mass in modal vibration of cylindrical structures[J]. Eng. Struct, 1992, 14(3): 163-175.
[13]YADYKIN Y, TENETOY V, LEVIN D. The added mass of a flexible plate oscillating in a fluid[J]. Journal of Fluids & Structures, 2003, 17(1): 115-123. 
[14]BLEVINS R D, PLUNKETT R. Formulas for natural frequency and mode shape[J]. Journal of Applied Mechanics, 1980, 47(2): 461.
[15]IRWIN P A, WARDLAW R L. A wind tunnel investigation of a retractable fabric roof for the Montreal Olympic Stadium[J]. Zement-Kalk-Gips, 1980, 2: 925-938.
[16]ZHOU Y, LI Y Q, SHEN Z Y, et al. Study on added mass of a circular curved membrane vibrating in still air[J]. Thin-Walled Structures, 2018, 127: 200-209.
[17]LI Y Q, WANG L, SHEN Z Y, et al. Added-mass estimation of flat membranes vibrating in still air[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(8): 815-824.
[18]CHEN Z, WU Y, SUN X. Research on the added mass of open-type one-way tensioned membrane structure in uniform flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137: 69-77.
[19]DANTE D S, AFAQUE S. Scaling of added mass and added damping of cylindrical rods by means of FSI simulations[J]. Journal of Fluids and Structures, 2019, 88: 241-256.
[20]朱仁传, 郭海强, 缪国平, 等. 一种基于CFD理论船舶附加质量与阻尼的计算方法[J]. 上海交通大学学报, 2009, 43(2): 198-203.
ZHU Renchuan, GUO Haiqiang, MIAO Guoping, et al. A computational method for evaluation of added mass and damping of ship based on CFD theory[J]. Journal of Shanghai Jiao Tong University, 2009, 43(2): 198-203.
[21]马烨, 单雪雄. 数值计算复杂外形物体附加质量的方法[J]. 计算机仿真, 2007, 24(5): 75-79. 
MA Ye, SHAN Xuexiong. A new numerical computation method for added masses of complicated object[J]. Computer Simulation, 2007, 24(5): 75-79.
[22]傅慧萍, 李杰. 附加质量CFD计算方法研究[J]. 哈尔滨工程大学学报, 2011, 32(2): 148-152.
FU Huiping, LI Jie. Numerical studies of added mass based on the CFD method[J]. Journal of Harbin Engineering University, 2011, 32(2): 148-152.
[23]宋丽华. 水下航行体附加质量的计算方法[J]. 水雷战与舰船防护, 2017, 25(4): 58-62.
SONG Lihua. Calculation method of added mass for underwater vehicle[J]. Mine Warfare & Ship Self-defence, 2017, 25(4): 58-62.
[24]吴怒三, 王觉, 等. 流体诱发振动[M]. 北京:机械工业出版社, 1983: 1-363.

PDF(893 KB)

542

Accesses

0

Citation

Detail

段落导航
相关文章

/