风力机尾缘襟翼气动特性及减振性能研究

何科杉,陈严,漆良文,周奇

振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 198-206.

PDF(4033 KB)
PDF(4033 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 198-206.
论文

风力机尾缘襟翼气动特性及减振性能研究

  • 何科杉1,2,3,陈严1,漆良文1,周奇1,2
作者信息 +

Aerodynamic characteristics and vibration reduction performance of trailing edge flap of wind turbine

  • HE Keshan1,2,3, CHEN Yan1, QI Liangwen1, ZHOU Qi1,2
Author information +
文章历史 +

摘要

通过风洞试验研究风力机尾缘襟翼的气动特性,分析尾缘襟翼对翼型绕流的影响,得到尾缘襟翼对翼型气动参数的调节规律。尾缘襟翼具有对高频荷载敏感,响应速度快的特点,可有效补偿风力机变桨距控制的不足。设计了风力机独立变桨距与尾缘襟翼协同控制策略,独立变桨距控制环主要用于减缓低频荷载及振动,尾缘襟翼控制环主要用于减缓高频荷载及振动,并通过风力机模拟仿真分析控制策略的作用效果。研究结果表明尾缘襟翼与独立变桨距协同控制可同时减缓叶片低频和高频的荷载及振动,降载减振控制效果良好,具有较好的工程应用前景。

Abstract

The aerodynamic characteristics of trailing edge flaps were studied through wind tunnel test. The effect on airflow around the airfoil and regulation law of aerodynamic parameters by trailing edge flaps was discussed. As trailing edge flaps could fast response to wind loads, it could be used as an effectively supplementary means of individual pitch control of wind turbines. A combined pitch and trailing edge flaps control strategy was designed to mitigate fatigue loads and vibrations of wind turbines. The individual pitch control loop was mainly used to alleviate low frequency fatigue loads and vibrations, and trailing edge flap control loop was mainly used to alleviate high frequency fatigue loads and vibrations. The simulation results showed that this control strategy can effectively mitigate the low frequency and high frequency fatigue loads and vibrations of wind turbines, which has a broad prospect of engineering application.

关键词

风力机 / 尾缘襟翼 / 气动特性 / 减振性能 / 独立变桨距与尾缘襟翼协同控制

Key words

wind turbine / trailing edge flap / aerodynamic characteristics / vibration reduction performance / coordinated control of independent variable pitch and trailing edge flap

引用本文

导出引用
何科杉,陈严,漆良文,周奇. 风力机尾缘襟翼气动特性及减振性能研究[J]. 振动与冲击, 2021, 40(15): 198-206
HE Keshan, CHEN Yan, QI Liangwen, ZHOU Qi. Aerodynamic characteristics and vibration reduction performance of trailing edge flap of wind turbine[J]. Journal of Vibration and Shock, 2021, 40(15): 198-206

参考文献

[1]柯世堂,王同光,曹九发,等. 考虑土-结相互作用大型风力发电结构风致响应分析[J]. 土木工程学报,2015(2):18-25.
KE Shitang, WANG Tongguang, CAO Jiufa, et al. Analysis on wind-induced responses of large wind power structures considering soil-structure interaction[J]. China Civil Engineering Journal, 2015(2):18-25.
[2]楼文娟, 余江, 潘小涛. 风力机叶片挥舞摆振气弹失稳分析[J]. 工程力学,2015,32(11):236-242.
LOU Wenjuan, YU Jiang, PAN Xiaotao. Calculating for aerodynamic stability responses of wind turbine blade in flapwise and edgewise dirrection[J].  Engineering Mechanics, 2015, 32(11):236-242.
[3]BARLAS T K, VAN KUIK G A M. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1):1-27.
[4]BERGAMI L, POULSEN N K. A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation[J]. Wind. Energy, 2014, 18: 625-641.
[5]BAK C, GAUNAA M, ANDERSEN P B, et al. Wind tunnel test on airfoil riso-b1-18 with an active trailing edge flap[J]. Wind. Energy, 2010, 13: 207-219. 
[6]CASTAIGNET D, BARLAS T, BUHL T, et al. Full-scale test of trailing edge flaps on a Vestas V27 wind turbine: active load reduction and system identification[J]. Wind Energy, 2013, 17: 549-564.
[7]BARLAS T K, WINGERDEN W V, HULSKAMP A W. Smart dynamic rotor control using active flaps on a small-scale wind turbine: Aeroelastic modeling and comparison with wind tunnel measurements[J]. Wind Energy, 2013, 16: 1287-1301.
[8]ZHANG Mingming, YU Wei, XU Jianzhong. Aerodynamic physics of smart load control for wind turbine due to extreme wind shear[J]. Renewable Energy, 2014, 70: 204-210.
[9]YU Wei, ZHANG Mingming, XU Jianzhong. Effect of smart rotor control using a deformable trailing edge flap on load reduction under normal and extreme turbulence[J]. Energies, 2012, 5: 3608-3626.
[10]谭斌, 张明明, 徐健中. 柔性尾缘襟翼参数影响及流动机理研究[J]. 工程热物理学报,2015,36(9):1912-1916.
TAN Bin, ZHANG Mingming, XU Jianzhong. Parameter study of the deformable trailing edge flap and the flow physics behind[J]. Journal of Engineering Thermophysics, 2015, 36(9):1912-1916.
[11]穆安乐,张广兴,李迺璐,等. 基于分布式襟翼风力机桨叶的模型预测振动控制[J]. 振动与冲击,2018, 37(14):79-85.
MU Anle, ZHANG Guangxing, LI Nailu, et al. Model predictive flow control of wind turbine blades based on distributed flaps[J]. Journal of Vibration and Shock, 2018, 37(14):79-85.
[12]季康,李春,阳君,等. 尾缘襟翼动态气动特性与控制策略研究[J]. 太阳能学报,2017(7):1912-1920.
JI Kang,LI Chun,YANG Jun,et al. Research on dynamic aerodynamic performance and flow control of airfail with flap[J]. Acta Energiae Solaris Sinica, 2017(7):1912-1920.
[13]叶舟,郝文星,丁勤卫,等. 不同工况下风力机翼型襟翼气动特性分析[J]. 太阳能学报,2017(9):2535-2543.
YE Zhou, HAO Wenxing,DING Qinwei,et al. Analysis on performance of deformabe trailing edge flap on different working conditions[J]. Acta Energiae Solaris Sinica, 2017(9):2535-2543.
[14]张文广,王奕枫,刘瑞杰. 风力机智能叶片非定常气动特性分析[J]. 太阳能学报,2019(4):1171-1178.
ZHANG Wenguang,WANG Yifeng,LIU Ruijie. Analysis of unsteady aerodynamic performance on wind turbine smart blade[J]. Acta Energiae Solaris Sinica, 2019(4):1171-1178.
[15]李周复.风洞试验手册[M].北京:航空工业出版社,2015.
[16]MERLE C P, DAVID C W, BASSEM R. Mechanics of fluids. 4th ed. [M]. Mason, OH: South-Western, Cengage Learning,2012.
[17]HE Keshan, QI Liangwen, ZHENG Liming, et al. Combined pitch and trailing edge flap control for load mitigation of wind turbines[J]. Energies, 2018, 11(10): 02519.
[18]JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, US: National Renewable Energy Laboratory, 2009. 
[19]JOHN D A. Fundamentals of aerodynamics. 6th ed. [M]. New York: Mc Graw-Hill, 2017.
[20]Wind Turbines Part 1: Design Requirements: IEC 61400-1[S]. Switzerland: International Electrotechnical Commission, 2014.

PDF(4033 KB)

Accesses

Citation

Detail

段落导航
相关文章

/