基于圆锥微凸体的结合面法向刚度分形模型研究

兰国生,孙万,谭文兵,张学良,温淑花,陈永会

振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 207-215.

PDF(1342 KB)
PDF(1342 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 207-215.
论文

基于圆锥微凸体的结合面法向刚度分形模型研究

  • 兰国生,孙万,谭文兵,张学良,温淑花,陈永会
作者信息 +

Cone elastoplastic fractal model of two contact rough surfaces

  • LAN Guosheng, SUN Wan, TAN Wenbing, ZHANG Xueliang, WEN Shuhua, CHEN Yonghui
Author information +
文章历史 +

摘要

将粗糙表面上的微凸体等效为圆锥体,结合分形理论和改进的W-M函数,建立了结合面法向接触刚度分形模型。对模型进行仿真计算,结果表明:结合面无量纲法向接触载荷随着无量纲接触面积、材料塑性指数和无量纲分形粗糙度参数的增大而增大;随着粗糙面分形维数的增大先减小后增大,且在分形维数等于1.5附近时达到最小值;结合面无量纲法向接触刚度随着无量纲法向接触载荷和材料塑性指数的增大而增大;随着无量纲分形粗糙度参数的增大而减小;随着粗糙面分形维数的增大先增大后减小,且在分形维数等于1.6附近时达到最大值。通过与试验数据对比,验证了该模型的正确性,可用于相关的理论分析与计算。

Abstract

Here, a micro convex body on rough surface was equivalent to a cone, combined with the fractal theory and the improved W-M function, the fractal model for normal contact stiffness of interface between two contact rough surfaces was established. Simulation calculations were done for the model. The results showed that the dimensionless normal contact load on interface increases with increase in dimensionless contact area, material plasticity index and dimensionless fractal roughness parameter; with increase in fractal dimension of rough surface, the dimensionless normal contact load firstly decreases and then increases, and reaches the minimum value when the fractal dimension is about 1.5; the dimensionless normal contact stiffness on interface increases with increase in dimensionless normal contact load and material plasticity index, and decreases with increase in dimensionless fractal roughness parameter; the dimensionless normal contact stiffness increases firstly and then decreases with increase in fractal dimension of rough surface, and reaches the maximum value when the fractal dimension is about 1.6; compared with test data, the correctness of the model is verified, the model can be applied in the related theoretical analysis and calculation.

关键词

圆锥微凸体 / 结合面 / 分形理论 / 法向接触刚度

Key words

conical asperity / interface / fractal theory / normal contact stiffness

引用本文

导出引用
兰国生,孙万,谭文兵,张学良,温淑花,陈永会. 基于圆锥微凸体的结合面法向刚度分形模型研究[J]. 振动与冲击, 2021, 40(15): 207-215
LAN Guosheng, SUN Wan, TAN Wenbing, ZHANG Xueliang, WEN Shuhua, CHEN Yonghui. Cone elastoplastic fractal model of two contact rough surfaces[J]. Journal of Vibration and Shock, 2021, 40(15): 207-215

参考文献

[1]张学良. 机械结合面动态特性及应用[M]. 北京:中国科技出版社,2002.
[2]张广鹏,史文浩,黄玉美. 机床导轨结合部的动态特性解析方法及其应用[J]. 机械工程学报,2002,38(10):114-117.
ZHANG Guangpeng, SHI Wenhao, HUANG Yumei. Analysis method of dynamic behaviors of guideway joint and its application in machine tools design [J]. Chinese Journal of Mechanical Engineering, 2002, 38(10): 114-117.
[3]孙见君,张凌峰,於秋萍,等. 基于粗糙表面分形表征新方法的结合面法向接触刚度模型[J]. 振动与冲击,2019, 38(7): 212-217.
SUN Jianjun, ZHANG Lingfeng, YU Qiuping, et al. A joint surface normal contact stiffness model based on a new rough surface fractal characterization method [J]. Journal of Vibration and Shock, 2019, 38(7): 212-217.
[4]张学良,黄玉美,韩颖. 基于接触分形理论的机械结合面法向接触刚度模型[J]. 中国机械工程,2000,11(7):727-729.
ZHANG Xueliang, HUANG Yumei, HAN Ying. Fractal model of the normal contact stiffness of machine joint surfaces based on the fractal contact theory [J]. Chinese Mechanical Engineering, 2000, 11(7): 727-729.
[5]兰国生,张学良,丁红钦,等. 基于分形理论的结合面改进接触模型[J]. 农业机械报,2011,42(10):217-223.
LAN Guosheng, ZHANG Xueliang, DING Hongqin, et al. Modified contact model of joint interfaces based onfractal theory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(10): 217-223.
[6]王润琼,朱立达,朱春霞. 基于域扩展因子和微凸体相互作用的结合面接触刚度模型研究[J]. 机械工程学报,2018,54(19):88-95.
WANG Runqiong, ZHU Lida, ZHU Chunxia. Investigation of contact stiffness model for joint surfaces based on domain expansion factor and asperity interaction [J]. Chinese Mechanical Engineering, 2018, 54(19): 88-95.
[7]陈永会,张学良,温淑花. 粗糙表面弹塑性接触连续光滑指数函数模型与法向接触刚度研究[J]. 西安交通大学学报,2016,50(7):58-67.
CHEN Yonghui, ZHANG Xueliang, WEN Shuhua, et al. Research on continuous smooth exponential model of elastic-plastic contact and normal contact stiffness of rough surface [J]. Journal of Xi’an Jiaotong University, 2016, 50(7): 58-67.
[8]刘伟强,张进华,洪军,等. 椭圆抛物体形微凸体弹性接触力学模型[J]. 西安通大报,2015,49(10):34-40.
LIU Weiqiang, ZHANG Jinhua, HONG Jun, et al. Elastic contact model of elliptical parabolic asperity [J]. Journal of Xi’an Jiaotong University, 2015, 49(10): 34-40.
[9]ADAMS G G, NOSONOVSKY M. Contact modeling: forces [J]. Elsevier Tribology International, 2000, 33(5/6): 431-442.
[10]许志倩,闫相祯,杨秀娟,等. 随机抽样在粗糙表面接触力学行为分析中的应用[J]. 西安交通大学学报,2012,46(5):102-108.
XU Zhiqian, YAN Xiangzhen, YANG Xiujuan, et al. Contact behavior analysis for rough surfaces with random sampling [J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 102-108.
[11]田红亮,董元发,钟先友,等. 圆锥微凸体在粗糙表面接触分析中的应用[J]. 西安交通大学学报,2017,51(11):71-78.
TIAN Hongliang, DONG Yuanfa, ZHONG Xianyou, et al. Application of conical asperity in contact analysis of rough surfaces [J]. Journal of Xi’an Jiaotong University, 2017, 51(11): 71-78.
[12]JIANG Shuyun, ZHENG Yunjian. A contact stiffness model of machined plane joint based on fractal theory [J]. ASME Journal of Tribology, 2010, 132(1): 1-7.
[13]YAN W, KOMVOPOULOS K. Contact analysis of elastic-plastic fractal surfaces [J]. Journal of Applied Physics, 1998, 84(7): 3617-3624.
[14]刘佐民. 摩擦学理论与设计[M]. 武汉:武汉理工大学出版社,2009.
[15]丁雪兴,严如奇,贾永磊. 基于基底长度的粗糙表面分形接触模型的构建与分析[J]. 摩擦学学报,2014,34(4):341-347.
DING Xuexing, YAN Ruqi, JIA Yonglei. Construction and analysis of fractal contact mechanics model for rough surface based on base length[J]. Tribology, 2014, 34 (4): 341-347.
[16]JOURANI A. A new three-dimensional numerical model of rough contact: influence of mode of surface deformation on real area of contact and pressure distribution [J]. ASME Journal of Tribology, 2015, 137(1), 011401-1-011401-11.
[17]陈虹旭,董冠华,殷勤,等. 基于分形理论的结合面法向接触刚度模型[J]. 振动与冲击,2019,38(8):218-224.
CHEN Hongxu, DONG Guanhua, YIN Qin, et al. A normal contact stiffness model of joint surface based on the fractal theory [J]. Journal of Vibration and Shock, 2019, 38(8): 218-224.
[18]张学良,陈永会,温淑花,等. 考虑弹塑性变形机制的结合面法向接触刚度建模[J]. 振动工程学报,2015,28(1):91-99.
ZHANG Xueliang, CHEN Yonghui, WEN Shuhua, et al. The model of normal contact stiffiness of joint interfaces incorporating elastoplastic deformation mechanism [J]. Joumal of Vibration Engineering, 2015, 28(1): 91-99.
[19]WANG Runqiong, ZHU Lida, ZHU Chunxia. Research on fractal model of normal contact stiffness for mechanical joint considering asperity interaction [J]. International Journal of Mechanical Sciences, 2017, 134: 357-369.

PDF(1342 KB)

Accesses

Citation

Detail

段落导航
相关文章

/