[1]张学良. 机械结合面动态特性及应用[M]. 北京:中国科技出版社,2002.
[2]张广鹏,史文浩,黄玉美. 机床导轨结合部的动态特性解析方法及其应用[J]. 机械工程学报,2002,38(10):114-117.
ZHANG Guangpeng, SHI Wenhao, HUANG Yumei. Analysis method of dynamic behaviors of guideway joint and its application in machine tools design [J]. Chinese Journal of Mechanical Engineering, 2002, 38(10): 114-117.
[3]孙见君,张凌峰,於秋萍,等. 基于粗糙表面分形表征新方法的结合面法向接触刚度模型[J]. 振动与冲击,2019, 38(7): 212-217.
SUN Jianjun, ZHANG Lingfeng, YU Qiuping, et al. A joint surface normal contact stiffness model based on a new rough surface fractal characterization method [J]. Journal of Vibration and Shock, 2019, 38(7): 212-217.
[4]张学良,黄玉美,韩颖. 基于接触分形理论的机械结合面法向接触刚度模型[J]. 中国机械工程,2000,11(7):727-729.
ZHANG Xueliang, HUANG Yumei, HAN Ying. Fractal model of the normal contact stiffness of machine joint surfaces based on the fractal contact theory [J]. Chinese Mechanical Engineering, 2000, 11(7): 727-729.
[5]兰国生,张学良,丁红钦,等. 基于分形理论的结合面改进接触模型[J]. 农业机械报,2011,42(10):217-223.
LAN Guosheng, ZHANG Xueliang, DING Hongqin, et al. Modified contact model of joint interfaces based onfractal theory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(10): 217-223.
[6]王润琼,朱立达,朱春霞. 基于域扩展因子和微凸体相互作用的结合面接触刚度模型研究[J]. 机械工程学报,2018,54(19):88-95.
WANG Runqiong, ZHU Lida, ZHU Chunxia. Investigation of contact stiffness model for joint surfaces based on domain expansion factor and asperity interaction [J]. Chinese Mechanical Engineering, 2018, 54(19): 88-95.
[7]陈永会,张学良,温淑花. 粗糙表面弹塑性接触连续光滑指数函数模型与法向接触刚度研究[J]. 西安交通大学学报,2016,50(7):58-67.
CHEN Yonghui, ZHANG Xueliang, WEN Shuhua, et al. Research on continuous smooth exponential model of elastic-plastic contact and normal contact stiffness of rough surface [J]. Journal of Xi’an Jiaotong University, 2016, 50(7): 58-67.
[8]刘伟强,张进华,洪军,等. 椭圆抛物体形微凸体弹性接触力学模型[J]. 西安通大报,2015,49(10):34-40.
LIU Weiqiang, ZHANG Jinhua, HONG Jun, et al. Elastic contact model of elliptical parabolic asperity [J]. Journal of Xi’an Jiaotong University, 2015, 49(10): 34-40.
[9]ADAMS G G, NOSONOVSKY M. Contact modeling: forces [J]. Elsevier Tribology International, 2000, 33(5/6): 431-442.
[10]许志倩,闫相祯,杨秀娟,等. 随机抽样在粗糙表面接触力学行为分析中的应用[J]. 西安交通大学学报,2012,46(5):102-108.
XU Zhiqian, YAN Xiangzhen, YANG Xiujuan, et al. Contact behavior analysis for rough surfaces with random sampling [J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 102-108.
[11]田红亮,董元发,钟先友,等. 圆锥微凸体在粗糙表面接触分析中的应用[J]. 西安交通大学学报,2017,51(11):71-78.
TIAN Hongliang, DONG Yuanfa, ZHONG Xianyou, et al. Application of conical asperity in contact analysis of rough surfaces [J]. Journal of Xi’an Jiaotong University, 2017, 51(11): 71-78.
[12]JIANG Shuyun, ZHENG Yunjian. A contact stiffness model of machined plane joint based on fractal theory [J]. ASME Journal of Tribology, 2010, 132(1): 1-7.
[13]YAN W, KOMVOPOULOS K. Contact analysis of elastic-plastic fractal surfaces [J]. Journal of Applied Physics, 1998, 84(7): 3617-3624.
[14]刘佐民. 摩擦学理论与设计[M]. 武汉:武汉理工大学出版社,2009.
[15]丁雪兴,严如奇,贾永磊. 基于基底长度的粗糙表面分形接触模型的构建与分析[J]. 摩擦学学报,2014,34(4):341-347.
DING Xuexing, YAN Ruqi, JIA Yonglei. Construction and analysis of fractal contact mechanics model for rough surface based on base length[J]. Tribology, 2014, 34 (4): 341-347.
[16]JOURANI A. A new three-dimensional numerical model of rough contact: influence of mode of surface deformation on real area of contact and pressure distribution [J]. ASME Journal of Tribology, 2015, 137(1), 011401-1-011401-11.
[17]陈虹旭,董冠华,殷勤,等. 基于分形理论的结合面法向接触刚度模型[J]. 振动与冲击,2019,38(8):218-224.
CHEN Hongxu, DONG Guanhua, YIN Qin, et al. A normal contact stiffness model of joint surface based on the fractal theory [J]. Journal of Vibration and Shock, 2019, 38(8): 218-224.
[18]张学良,陈永会,温淑花,等. 考虑弹塑性变形机制的结合面法向接触刚度建模[J]. 振动工程学报,2015,28(1):91-99.
ZHANG Xueliang, CHEN Yonghui, WEN Shuhua, et al. The model of normal contact stiffiness of joint interfaces incorporating elastoplastic deformation mechanism [J]. Joumal of Vibration Engineering, 2015, 28(1): 91-99.
[19]WANG Runqiong, ZHU Lida, ZHU Chunxia. Research on fractal model of normal contact stiffness for mechanical joint considering asperity interaction [J]. International Journal of Mechanical Sciences, 2017, 134: 357-369.