基于绝对节点坐标法的变截面拱面外弯扭振动分析

刘茂,王忠民

振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 231-237.

PDF(983 KB)
PDF(983 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (15) : 231-237.
论文

基于绝对节点坐标法的变截面拱面外弯扭振动分析

  • 刘茂,王忠民
作者信息 +

Analysis of out of plane bending and torsional vibration of variable cross-section arch based on ANCF

  • LIU Mao, WANG Zhongmin
Author information +
文章历史 +

摘要

基于绝对节点坐标法(absolute nodal coordinate formulation,ANCF)
研究了均质变截面Euler-Bernoulli拱的面外弯扭振动的振动特性。建立了考虑面外弯曲和扭转的均质的振动模型,在总体惯性坐标系下,将它划分为若干个变截面拱单元,给出单元的动能、应变能以及外力势能的表达式,得到了单元质量矩阵和刚度矩阵,进而获得了拱的总体的质量矩阵和刚度矩阵。应用Lagrange方程建立了拱的弯扭振动微分方程。数值计算了两端固定的等截面圆弧拱和变截面圆弧拱的前三阶频率,画出了相应的振型图,分析了变截面圆弧拱的中心角、半径、高宽比以及均布径向载荷对其振动特性的影响规律;数值计算了两端固定的等截面和变截面抛物线型非圆弧拱的前三阶频率,画出了相应的振型图。

Abstract

Based on the absolute node coordinate formulation (ANCF), vibration characteristics of a homogeneous Euler-Bernoulli arch with variable cross-section were studied. Firstly, a homogeneous vibration model considering out of plane bending and torsion was established. In the global inertial coordinate system, it was divided into several arch elements with variable cross-section. The expressions of element’s kinetic energy, strain energy and potential energy of external forces were derived to obtain element’s mass matrix and stiffness matrix, and furthermore the arch’s mass matrix and stiffness matrix were assembled. Secondly, the arch’s bending-torsional vibration differential equation was established by using Lagrange equation. Finally, the first three order natural frequencies of equal cross-section circular arc arch and variable cross-section circular arc arch fixed at two-end were calculated numerically and the corresponding modal shapes were plotted. Effect laws of variable cross-section circular arc arch’s center angle, radius, height-width ratio and uniformly distributed radial load on its vibration characteristics were analyzed. The first three order natural frequencies of equal cross-section and variable cross-section parabolic type non-circular arc arches fixed at two-end were calculated numerically and the corresponding modal shapes were plotted.

关键词

绝对节点坐标法(ANCF) / 非圆弧拱 / 面外弯扭振动 / 变截面

Key words

absolute nodal coordinate formulation (ANCF) / non-circular arch / out-of-plane bending and torsion vibration / variable cross-section

引用本文

导出引用
刘茂,王忠民. 基于绝对节点坐标法的变截面拱面外弯扭振动分析[J]. 振动与冲击, 2021, 40(15): 231-237
LIU Mao, WANG Zhongmin. Analysis of out of plane bending and torsional vibration of variable cross-section arch based on ANCF[J]. Journal of Vibration and Shock, 2021, 40(15): 231-237

参考文献

[1]IRIE T, YAMADA G, TANAKA K. Natural frequencies of out-of-plane vibration of arcs[J]. Journal of Applied Mechanics, 1982, 49(4): 910-913.
[2]赵章泳, 邱艳宇, 王明洋, 等. 弹性边界下圆弧拱的自由振动分析[J]. 振动与冲击, 2016, 35(21): 120-125.
ZHAO Zhangyong, QIU Yanyu, WANG Mingyang, et al.  Free vibration analysis of arches under elastic support  boundary conditions [J]. Journal of Vibration and Shock,  2016, 35(21): 120-125.
[3]LAURA P A A, IRASSAR P L V D. A note on in- plane vibrations of arch-type structures of non-uniform cross-section: the case of linearly varying thickness[J]. Journal of Sound and Vibration, 1988, 124(1): 1-12.
[4]EFTEKHARI S A. Differential quadrature procedure for in-plane  vibration analysis of variable thickness circular arches  traversed by a moving point load[J]. Applied Mathematical  Modelling, 2016, 40(7/8): 4640-4663.
[5]危媛丞, 李周, 郑荧光. 基于Rayleigh-Ritz法的考虑配重位置影响的固支圆弧拱平面外自振频率计算[J]. 水利与建筑工程学报, 2017, 15(6): 163-167.
WEI Yuancheng, LI Zhou, ZHENG Yingguang. Calculation of natural vibration frequency outside plane of fixed-supported arc arch based on Rayleigh-Ritz method and considering the influence of weight position[J]. Journal of Water Conservancy and Building Engineering, 2017, 15(6): 163-167.
[6]陈耀, 冯健. 固接抛物线浅拱的平面内稳定性分析[J]. 东南大学学报(自然科学版), 2010, 40(1): 190-195.
CHEN Yao, FENG Jian. In-plane stability of fixed parabolic shallow arches [J]. Journal of Southeast University (Natural Science Edition), 2010, 40(1): 190-195.
[7]康婷, 许金余, 白应生, 等. 恒载效应对拱结构自振频率的影响分析[J]. 动力学与控制学报, 2014, 12(1): 62-66.
KANG Ting, XU Jinyu, BAI Yingsheng, et al. Analysis of the effect of dead load effect on the natural frequency of arch structure[J]. Journal of Dynamics and Control, 2014, 12(1): 62-66.
[8]BERZERI M, SHABANA A A. Development of simple models  for the elastic forces in the absolute nodal coordinate  formulation[J]. Journal of Sound and Vibration, 2000,  235(4): 539-565.
[9]李彬, 刘锦阳. 大变形柔性梁系统的绝对坐标方法[J]. 上海交通大学学报, 2005, 39(5): 827-831.
LI Bin, LIU Jinyang. Absolute coordinate method for large deformation flexible beam system[J].
Journal of Shanghai Jiao Tong University, 2005, 39(5): 827-831.
[10]赵春璋, 余海东, 王皓, 等. 基于绝对节点坐标法的变截面梁动力学建模与运动变形分析[J]. 机械工程学报, 2014, 50(17): 38-45.
ZHAO Chunzhang, YU Haidong, WANG Hao, et al. Dynamic modeling and motion deformation analysis of variable section beam based on absolute node coordinate formulation[J]. Journal of Mechanical Engineering, 2014, 50(17): 38-45.
[11]王忠民, 吴力国. 基于变长度单元ANCF的轴向伸展悬臂 梁振动分析[J]. 振动与冲击, 2019, 38(3): 194-199.
WANG Zhongmin, WU Liguo. Vibration analysis of axially deploying cantilever beam based on ANCF with length-varying beam element[J]. Journal of Vibration and Shock, 2019, 38(3): 194-199.
[12]李鹏飞,曹博宇,汪振宇,等. 含非线性大变形构件的柔顺机构建模与分析[J]. 振动与冲击, 2019,  38(11): 110-115.
LI Pengfei, CAO Boyu, WANG Zhenyu, et al. Modeling and analysis for compliant mechanisms with nonlinear large deformation components[J]. Journal of Vibration and Shock, 2019, 38(11): 110-115.
[13]张君茹, 程耿东. 绝对节点坐标法下斜率不连续问题处理方法讨论[J]. 动力学与控制学报, 2020, 18(2): 21-34. 
ZHANG Junru, CHENG Gengdong. Discussion on the processing method of slope discontinuity under absolute node coordinate method[J]. Journal of Dynamics and Control, 2020, 18(2): 21-34.
[14]项海帆, 刘光栋. 拱结构的稳定与振动[M]. 北京: 人民交通出版社, 1991.
[15]刘鸿文. 高等材料力学[M]. 北京: 高等教育出版社, 1985.
[16]康厚军. 索拱结构的稳定与振动研究[D]. 长沙: 湖南大学, 2007.

PDF(983 KB)

Accesses

Citation

Detail

段落导航
相关文章

/