针对设备在强冲击环境下的防护问题,根据环形间隙阻尼系数计算公式,并以双出杆阻尼结构为基础,提出一种基于新型阻尼结构的Stewart抗冲隔振平台。通过数值仿真对比了,单自由度下新型阻尼结构与传统双出杆阻尼结构的耗能特性,结果表明相比双出杆阻尼结构,两者的最大阻尼力差值随激励频率的增大而增大,新型阻尼器耗能增加了28%。通过Adams与Matlab的联合仿真,对新型阻尼结构Stewart平台和双出杆阻尼结构Stewart平台进行冲击响应计算;在垂直冲击中,两种平台支腿阻尼力最大相差为310 N,新型阻尼结构Stewart平台复位时间相比与双出杆阻尼结构Stewart平台缩短了49.7%;而在倾斜45°冲击中,新型阻尼结构Stewart平台相比于双出杆阻尼结构Stewart平台在y向缩短了26.2%的复位时间,在z向缩短了36.3%。根据正负双波测试的结果,联合仿真计算可以准确地描述Stewart平台在撞击下的响应特性。同时也证明了平台具有更好的抗冲击阻尼能力。
Abstract
Here, aiming at the protection problem of equipment under strong impact environment, according to the calculation formula of annular gap damping coefficient, and based on double-out-bar damping structure, a Stewart anti-impact vibration isolation platform based on new damping structure was proposed. Through numerical simulation, energy-dissipating characteristics of new damping structure were compared with those of traditional double-out-bar damping structure under condition of SDOF. The results showed that the difference between the maximum damping forces of the two structures increases with increase in excitation frequency, the energy-dissipating of the new damping structure increases by 28%; through co-simulation of Adams and MATLAB, impact responses of Stewart platform with new damping structure and Stewart platform with double-out-bar damping structure were calculated; in vertical impact, the maximum difference between leg damping forces of the two platforms is 310 N, the reset time of Stewart platform with new damping structure is 49.7% shorter than that of Stewart platform with double-out-bar damping structure; while in inclined 45° impact, compared to Stewart platform with double-out-bar damping structure, the reset time of Stewart platform with new damping structure decreases by 26.2% in y direction and 36.3% in z direction; according to the positive and negative dual-wave testing results, the co-simulation calculation can accurately describe response characteristics of Stewart platform under impact, and reveal Stewart platform with new damping structure has better anti-shock damping capacity.
关键词
新型阻尼结构 /
Stewart平台 /
冲击响应 /
特性分析
{{custom_keyword}} /
Key words
new damping structure /
Stewart platform /
shock response /
characteristic analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]朱章根,杨家谋,钟云.Stewart平台动力学分析[J].农业与技术,2019,39(13):31-36.
ZHU Zhanggen,YANG Jiamou,ZHONG Yun.Dynamic analysis of Stewart platform[J].Agriculture and Technology,2019,39(13):31-36.
[2]赵荣珍,唐小斌,马德福.Stewart被动隔振平台结构参数对系统固有频率的影响[J].兰州理工大学学报,2018,44(3):39-44.
ZHAO Rongzhen, TANG Xiaobin, MA Defu. The influence of structural parameters of Stewart passive vibration isolation platform on the natural frequency of the system[J].Journal of Lanzhou University of Technology,2018,44(3):39-44.
[3]STEWART D. A platform with six degrees of freedom [J]Proc-eedings of the Institution of Mechanical Engineers, 1965, 180(1): 371-386.
[4]SELIG J M, DING X. Theory of vibration in Stewart platforms [A]. Proceeding of the 2001 IEEE /RSJ [C]. 2001 International Conference on Intelligent Robots and Systems, Mau, Hawai, USA, 2001
[5]梁康. 基于Stewart隔振平台的航天器主动隔振控制器设计[D].哈尔滨:哈尔滨工业大学,2019.
[6]BAIG R U, PUGAZHENTHI S. Design optimization of stewart platform confguration for active vibration isolation[J]. Indian Journal of Science and Technology, 2015, 8(23):1-8.
[7]胡启国,骆艳丽,王宇谦.基于多目标遗传算法的Stewart平台运动学正解解算[J].机械传动,2019,43(3):48-53.
HU Qiguo, LUO Yanli, WANG Yuqian.Stewart platform forward kinematics solution based on multi-objective geneticalgorithm[J].Mechanical Transmission,2019,43(3):48-53.
[8]PREUMONTA A, HORODINCAA M, ROMANESCUA I, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration, 2007,300:644-661.
[9]CHI Weichao, CAO Dengqing, WANG Dongwei, et al. Design and experimental study of a VCM-based stewart parallel mechanism used for active vibration isolation[J]. Energies, 2015, 8(8):8001-8019.
[10]温肇东,张春辉,张磊. 软特性刚度在被动式Stewart隔冲平台中的应用研究[J]. 兵工学报,2015,36(增刊1):145-151.
WEN Zhaodong, ZHANG Chunhui, ZHANG Lei. Effect of soft stiffness on a passive stewart shock isolation platform[J]. Acta Armamentarii, 2015, 36(Sup 1):145-151.
[11]张春辉,汪玉,温肇东,等. 被动式Stewart隔冲平台的刚度特性[J]. 振动、测试与诊断,2015,35(2):289-294.
ZHANG Chunhui, WANG Yu, WEN Zhaodong, et al. Research on stiffness characteristics of a passive stewart shock isolation platform[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(2):289-294.
[12]欧进萍, 丁建华. 油缸间隙式黏滞阻尼器理论与性能试验[J]. 地震工程与工程振动, 1999, 19 (4): 82-89.
OU Jinping, DING Jianhua. Theory and performance test of cylinder gap viscous damper[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(4): 82-89.
[13]沈崇棠, 刘鹤年. 非牛顿流体力学及其应用[M]. 北京:高等教育出版社, 1989.
[14]中国舰船研究院,BV043/85前联邦德国国防军舰艇建造规范:冲击安全性[S].北京:中国舰船研究院,1985.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}