联合噪声激励下分数阶三稳van der Pol振子的随机P分岔

李亚杰,吴志强,兰奇逊,郝颖,张祥云

振动与冲击 ›› 2021, Vol. 40 ›› Issue (16) : 275-280.

PDF(1257 KB)
PDF(1257 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (16) : 275-280.
论文

联合噪声激励下分数阶三稳van der Pol振子的随机P分岔

  • 李亚杰1,吴志强2,3,兰奇逊1,郝颖4,张祥云5
作者信息 +

Stochastic P bifurcation in a tri-stable van der Pol oscillator with fractional derivative excited by combined Gaussian white noises

  •  LI Yajie1, WU Zhiqiang2,3, LAN Qixun1, HAO Ying4, ZHANG Xiangyun5
Author information +
文章历史 +

摘要

研究了联合高斯白噪声激励下含分数阶导数项的三稳态van der Pol系统的随机P分岔问题。利用均方误差最小原则,将分数阶导数项等效为阻尼力与回复力的线性组合,从而将原系统转化为等价的整数阶系统。运用随机平均法得到了系统幅值的稳态概率密度函数(PDF),利用奇异性理论,得到了系统发生随机P分岔的临界参数条件。在转迁集曲线围成的各区域内分别选取相应参数定性分析了系统幅值稳态概率密度曲线的类型,并通过Monte Carlo模拟的方法将所得数值结果与解析结果进行了比较,从数值仿真与解析结果的符合程度来看,该研究的推导过程及系统转迁集的计算是准确的。该方法对于设计用于调整系统响应的分数阶控制器有直接的指导作用。

Abstract

The stochastic P bifurcation behavior of tri-stability in a generalized van der Pol system with fractional derivative under additive and multiplicative Gaussian white noise excitations was investigated.Firstly, based on the minimal mean square error principle, the fractional derivative was found to be equivalent to a linear combination of damping and restoring forces, and the original system was simplified into an equivalent integer order system.Secondly, the stationary probability density function (PDF) of system amplitude was obtained by stochastic averaging, and according to the singularity theory, the critical parameters for stochastic P bifurcation of the system were found.Finally, the nature of stationary PDF curves of the system amplitude were qualitatively analyzed by choosing corresponding parameters in each region divided by the transition set curves.The consistency between the analytical solutions and Monte Carlo simulation results verifies the theoretical analysis in this paper.

关键词

高斯白噪声 / 分数阶导数 / 随机P分岔 / 转迁集 / Monte Carlo模拟

Key words

combined Gaussian white noises / fractional derivative / stochastic P bifurcation / transition set / Monte Carlo simulation

引用本文

导出引用
李亚杰,吴志强,兰奇逊,郝颖,张祥云. 联合噪声激励下分数阶三稳van der Pol振子的随机P分岔[J]. 振动与冲击, 2021, 40(16): 275-280
LI Yajie, WU Zhiqiang, LAN Qixun, HAO Ying, ZHANG Xiangyun. Stochastic P bifurcation in a tri-stable van der Pol oscillator with fractional derivative excited by combined Gaussian white noises[J]. Journal of Vibration and Shock, 2021, 40(16): 275-280

参考文献

[1]XU M Y, TAN W C.Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion[J].Science in China Series A: Mathematics,2001, 44(11):1387-1399.
[2]SABATIER J,AGRAWAL O P,MACHADO J A.Advancesin fractional calculus[M].Dordrecht: Springer, 2007.
[3]PODLUBNY I.Fractional order systems and PID controller[J].IEEE Transactions on Automatic Control, 1999,44(1):208-214.
[4]MONJE C A, CHEN Y Q, VINAGRE B M, et al.Fractional-order systems and controls: fundamentals and applications[M].London: Springer-Verlag, 2010.
[5]BAGLEY R L, TORVIK J.Fractional calculus: a different approach to the analysis of viscoelastically damped structures[J].AIAA Journal, 2012, 21(5): 741-748.
[6]BAGLEY R L, TORVIK P J.Fractional calculus in the transient analysis of viscoelastically damped structures[J].AIAA Journal, 2012, 23(6):918-925.
[7]MACHADO J A T.Fractional order modelling of fractional-order holds[J].Nonlinear Dynamics,2012,70(1):789-796.
[8]MACHADO J T.Fractional calculus: application in modeling and control[M].New York: Springer, 2013.
[9]MACHADO J A T, COSTA A C, QUELHAS M D.Fractional dynamics in DNA[J].Communications in Nonlinear Science & Numerical Simulation, 2011,16(8):2963-2969.
[10]RONG H W, WANG X D, XU W, et al.On double-peak probability density functions of a Duffing oscillator under narrow-band random excitations[J].Acta Physica Sinica, 2005, 54(6):2557-2561.
[11]RONG H W, WANG X D, XU W, et al.On double peak probability density functions of duffing oscillator to combined deterministic and random excitations[J].Applied Mathematics and Mechanics, 2006, 27(11):1569-1576.
[12]GU R C.Stochastic bifurcations in Duffing-van der Pol oscillator with Lévy stable noise[J].Acta Physica Sinica, 2011, 60(6):1466-1467.
[13]XU Y, GU R C, ZHANG H Q, et al.Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise[J].Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2011, 83(2):056215.
[14]ZAKHAROVA A, VADIVASOVA T, ANISHCHENKO V, et al.Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator[J].Physical Review E:Statistical Nonlinear & Soft Matter Physics,2010,81(1):011106.
[15]WU Z Q, HAO Y.StochasticP-bifurcations in tri-stable van der Pol-Duffing oscillator with multiplicative colored noise[J].Acta Physica Sinica, 2015, 64(6):060501.
[16]CHEN L C, ZHU W Q.Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations[J].International Journal of Non-Linear Mechanics, 2011, 46(10):1324-1329.
[17]HUANG Z L, JIN X L.Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative[J].Journal of Sound & Vibration, 2009, 319(3):1121-1135.
[18]YANG Y G, XU W, SUN Y H, et al.Stochastic bifurcations in the nonlinear vibroimpact system with fractional derivative under random excitation[J].Communications in Nonlinear Science & Numerical Simulation, 2017, 42:62-72.
[19]LI W, ZHANG M T, ZHAO J F.Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise[J].Chinese Physics B, 2017(9):62-69.
[20]CHEN L C, WANG W H, LI Z S, et al.Stationary response of Duffing oscillator with hardening stiffness and fractional derivative[J].International Journal of Non-Linear Mechanics, 2013, 48:44-50.
[21]CHEN L C, LI Z S, ZHUANG Q Q, et al.First-passage failure of single-degree-of-freedom nonlinear oscillators with fractional derivative[J].Journal of Vibration & Control, 2013, 19(14):2154-2163.
[22]SHEN Y J, YANG S P, XING H J, et al.Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives[J].Communications in Nonlinear Science & Numerical Simulation, 2012, 17(7):3092-3100.
[23]YANG Y G, XU W, SUN Y H, et al.Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation[J].Chinese Physics B, 2016, 25(2):13-21.
[24]CHEN L C, ZHU W Q.Stochastic response of fractional-order van der Pol oscillator[J].Theoretical and Applied Mechanics Letters, 2014, 4(1):68-72.
[25]SPANOS P D, ZELDIN B A.Random vibration of systems with frequency-dependent parameters or fractional derivatives[J].Journal ofEngineering Mechanics,1997,123(3):290-292.
[26]朱位秋.随机振动[M].北京:科学出版社,1992.
[27]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.

PDF(1257 KB)

634

Accesses

0

Citation

Detail

段落导航
相关文章

/