基于gPC理论的不确定参数电动汽车脉冲响应研究

田国英,张大伟,易兴利,邓鹏毅,孙树磊

振动与冲击 ›› 2021, Vol. 40 ›› Issue (16) : 81-90.

PDF(2981 KB)
PDF(2981 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (16) : 81-90.
论文

基于gPC理论的不确定参数电动汽车脉冲响应研究

  • 田国英1,2,3,张大伟4,易兴利5,邓鹏毅1,2,3,孙树磊1,2,3
作者信息 +

Impulse responses of an electric vehicle with uncertain parameters based on the generalized polynomial chaos theory#br#

  • TIAN Guoying1,2,3,ZHANG Dawei4,YI Xingli5,DENG Pengyi1,2,3,SUN Shulei1,2,3
Author information +
文章历史 +

摘要

基于广义多项式混沌(gPC)理论和汽车系统动力学,建立了考虑电机参振的不确定参数电动汽车的平顺性分析模型,并与蒙特卡洛法对比,验证了模型的正确性。以某型电动乘用车为例,分别在整车和电机总成两类参数不确定(10%~30%变异系数)条件下,计算了汽车以10~60 km/h车速通过脉冲型路面时的平顺性指标和电机振动响应的均值、方差、变异系数、概率密度和分布以及超限概率等统计指标,分析了不同变异系数下两类参数不确定对各自振动响应的影响程度和规律。结果表明: gPC理论能快速给出参数不确定对各统计指标的影响程度和规律,且该影响十分显著;在所分析速度域内,随参数不确定程度的增加,各均值响应最大值基本不变,但其方差、变异系数和分布范围均不断增大,超限概率的变化规律存在多样性。当不确定参数变异系数为30%和车速为60 km/h时,车体加速度、悬架压缩量、轮胎载荷、电机加速度和悬置压缩量响应最大值的变异系数最大,分别可达34%,47%,42%,15%和51%;不同参数变异系数和车速条件下,以上各响应最大值超越给定限值的最大概率分别达53%,36%,30%,75%和68%,车轮离地最大概率则达到64%。

Abstract

Based on the generalized polynomial chaos (gPC) theory and automobile system dynamics, a vertical dynamics model of an electric vehicle considering electric motor vibration with uncertain parameters was established, and compared with the Monte Carlo method in which the correctness of the model was verified.Take a certain type electric vehicle as an example, under two kinds of parametric uncertainties (variation coefficient of 10%-30%) which result from the whole vehicle and the motor assembly respectively, the statistical indicators, such as the mean, variance, coefficient of variation, probability density and distribution, and overrun probability of the vehicle ride index and motor vibration were calculated, when the car runs over a pulse type pavement in the speed range of 10-60 km/h.Under different variation coefficient of the above two kinds of parameter uncertainties, the degree and rule of influence on respective vibration responses were analyzed.The results show that the degree and rule of influence of parametric uncertainty on their statistical indices can be obtained efficiently by the generalized polynomial chaos method, and the influences are significant.In the analyzed speed domain, the maximum values of each mean response are basically unchanged with the increase of the parameters’ uncertain degree, but the variances, variation coefficients and distribution ranges are all increasing, the changing rules of overrun probabilities have diversity.When the variation coefficient of uncertain parameters and vehicle speed are set to 30% and 60 km/h, respectively, the variation coefficients of the peaks of the vehicle body acceleration, suspension compression, tire load, motor acceleration and mount compression responses reach their maximums which are 34%, 47%, 42%, 15%, and 51%, respectively.Under different parametric variation coefficients and vehicle speeds, the largest probabilities of the above response peaks exceeding the given limits are 53%, 36%, 30%, 75%, and 68% respectively, and the biggest liftoff probability of the wheel is up to 64%.

关键词

电动汽车 / 平顺性 / 广义多项式混沌(gPC) / 参数不确定 / 变异系数 / 超限概率

Key words

electric vehicle / vehicle ride / generalized polynomial chaos(gPC) / parametric uncertainty / coefficient of variation / overrun probability

引用本文

导出引用
田国英,张大伟,易兴利,邓鹏毅,孙树磊. 基于gPC理论的不确定参数电动汽车脉冲响应研究[J]. 振动与冲击, 2021, 40(16): 81-90
TIAN Guoying,ZHANG Dawei,YI Xingli,DENG Pengyi,SUN Shulei. Impulse responses of an electric vehicle with uncertain parameters based on the generalized polynomial chaos theory#br#[J]. Journal of Vibration and Shock, 2021, 40(16): 81-90

参考文献

[1]张立军, 何辉.车辆行驶动力学理论及应用[M].北京: 国防工业出版社, 2011.
[2]FARIS F W, BENLAHCENE Z, HASBULLAH F.Ride quality of passenger cars: an overview on the research trends[J].International Journal of Vehicle Noise and Vibration, 2012,8(3): 185-199.
[3]TURKAY S, AKCAY H.A study of random vibration characteristics of the quarter-car model[J].Journal of Sound and Vibration, 2005,282: 111-124.
[4]黄志刚, 毛恩荣, 梁新成, 等.微型轿车八自由度整车动力学仿真与试验[J].农业机械学报, 2008,39(6): 29-33.
HUANG Zhigang, MAO Enrong, LIANG Xincheng, et al.Dynamic simulation and experiment of subminiature car based on eight DOF model[J].Transactions of the Chinese Society of Agricultural Machinery, 2008,39(6): 29-33.
[5]李杰, 秦玉英, 赵旗.汽车随机振动的建模与仿真[J].吉林大学学报, 2010,40(2): 316-319.
LI Jie, QIN Yuying, ZHAO Qi.Modelling and simulation of full-vehicle random vibration[J].Journal of Jilin University, 2010,40(2): 316-319.
[6]AGOSTINACCHIO M, CIAMPA D, OLITA S.The vibrations induced by surface irregularities in road pavements: a Matlab approach[J].European Transport Research Review, 2014,6(3): 267-275.
[7]戴军.基于四分之一车辆模型的具有随机结构参数车辆的随机动力分析[J].振动与冲击, 2010,29(6): 211-215.
DAI Jun.Stochastic dynamic analysis of vehicles with random parameters based on a quarter-car model[J].Journal of Vibration and Shock, 2010,29(6): 211-215.
[8]贾爱芹, 陈建军, 曹鸿钧.随机结构参数车辆在随机激励下的振动响应[J].西南交通大学学报, 2014,49(3): 438-443.
JIA Aiqin, CHEN Jianjun, CAO Hongjun.Vibration response of vehicle with stochastic structural parameters under random excitation[J].Journal of Southwest Jiaotong University, 2014,49(3): 438-443.
[9]GAO W, ZHANG N, JI J C, et al.Dynamic analysis of vehicles with uncertainty[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008,222(5): 657-664.
[10]KEWLANI G, CRAWFORD J, IAGNEMMA K.A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty[J].Vehicle System Dynamics, 2012,50(5): 749-774.
[11]WIENER N.The homogeneous chaos[J].American Journal of Mathematics, 1938,60(4): 897-936.
[12]GHANEM R, SPANOS P.Stochastic finite elements: a spectral approach[M].New York: Springer Verlag, 1991.
[13]XIU D B, KARNIADAKIS G E.The Wiener-Askey polynomial chaos for stochastic differential equations[J].SIAM Journal on Scientific Computing, 2002,24(2): 619-644.
[14]XIU D B.Numerical methods for stochastic computations: a spectral method approach[M].Princeton: Princeton University Press, 2010.
[15]SANDU A, SANDU C, AHMADIAN M.Modeling multibody systems with uncertainties, part I: theoretical and computational aspects[J].Multibody System Dynamics, 2006,15(4): 369-391.
[16]SANDU A, SANDU C, AHMADIAN M.Modeling multibody systems with uncertainties, part II: numerical applications[J].Multibody System Dynamics, 2006,15(3): 241-262.
[17]LI L, SANDU C.On the impact of cargo weight, vehicle parameters, and terrain characteristics on the prediction of traction for off-road vehicles[J].Journal of Terramechanics, 2007,44(3): 221-238.
[18]LI L, SANDU C, LEE J, et al.Stochastic modeling of tire-snow interaction using a polynomial chaos approach[J].Journal of Terramechanics, 2009,46(4): 165-188.
[19]LI L, SANDU C.Stochastic vehicle handling prediction using a polynomial chaos approach[J].International Journal of Vehicle Design, 2013,63(4): 327-363.
[20]凌锋.基于多项式混沌方法的汽车悬架系统不确定性研究[D].武汉: 华中科技大学, 2013.
[21]WU J L, LUO Z, ZHANG N, et al.A new uncertain analysis method and its application in vehicle dynamics[J].Mechanical Systems and Signal Processing, 2015,51: 659-675.
[22]BRADFORD J, MONTOMOLI F, D’AMMARO A.Uncertainty quantification and race car aerodynamics[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2014,228(4): 403-411.
[23]DAMMAK K, KOUBAA S, HAMI A E, et al.Numerical modelling of vibro-acoustic problem in presence of uncertainty: application to a vehicle cabin[J].Applied Acoustics, 2019,144: 113-123.
[24]AHLFELD R, CIAMPOLI F, PIETROPAOLI M, et al.Data-driven uncertainty quantification for formula 1: diffuser, wing tip and front wing variations[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019,233(6): 1495-1506.
[25]余志生.汽车理论[M].北京: 机械工业出版社, 2018.

PDF(2981 KB)

Accesses

Citation

Detail

段落导航
相关文章

/