针对直线AMD行程受限的问题,引入“旋转”的概念,结合直线电磁AMD驱动方式,提出了电磁驱动的回转式振动控制装置(RVCD)。RVCD利用质量块在轨道上做回转运动为结构提供主动控制力,从而减小土木工程结构在服役过程中受到外界干扰时的振动响应。由拉格朗日方程,建立了结构和装置耦合系统的力学模型,通过无量纲化处理以及全局坐标变换,将其转化为一种简化的级联规范型系统,采用滑模控制算法设计了该非线性系统的控制器。通过仿真,验证了结构RVCD控制系统在参数存在不确定性和受到外界干扰时良好的控制效果和鲁棒性。同时仿真结果表明,该控制器的减振效果对装置物理参数的改变具有不敏感性,并能够有效解决直线AMD的行程问题。最后,针对滑模控制算法中多参数的取值问题,从AMD做负功的角度构造了目标函数,提出了一种基于粒子群算法的优化方法。优化后结果表明,RVCD能够有效承担输入到结构的能量,从而减轻结构自身的地震响应。
Abstract
Here, aiming at the problem of limited stroke of linear AMD, the concept of “rotary” was introduced.Combined with the driving mode of linear electromagnetic AMD, the electromagnetic driven rotary vibration control device (RVCD) was proposed.RVCD could provide active control force to a structure by using a mass block rotating on its orbit to reduce vibration response of a civil engineering structure under external interferences during its service.Based on Lagrange equation, the mechanical model of the structure-RVCD coupled system was established.Through the dimensionless treatment and global coordinate transformation, the system was converted into a simplified cascade canonical system.The sliding mode control algorithm (SMCA) was used to design this nonlinear system’s controller.The numerical simulation verified the good control effect and robustness of the structural-RVCD coupled system under conditions of uncertain parameters and external disturbances.The simulation results showed that the vibration reduction effect of the controller is insensitive to variation of RVCD physical parameters, RVCD can effectively solve the stroke problem of linear AMD.Finally, aiming at the problem of multi-parameter choosing in SMCA, the objective function was constructed from the perspective of AMD doing negative work, and an optimization method based on PSO was proposed.The optimized results showed that RVCD can effectively bear input energy of a civil engineering structure to reduce its seismic responses.
关键词
回转式振动控制装置(RVCD) /
滑模控制算法(SMCA) /
粒子群算法(PSO) /
参数优化
{{custom_keyword}} /
Key words
rotary vibration control device (RVCD) /
sliding mode control algorithm (SMCA) /
particle swarm optimization (PSO) /
parametric optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003.
[2]YAMAMOTO M, AIZAWA S, HIGASHINO M, et al.Pratical applications of active mass dampers with hydraulic actuator[J].Earthquake Engineering and Structural Dynamics,2001, 30:1697-1717.
[3]XU H B, ZHANG C W, LI H, et al.Active mass driver control system for suppressing wind-induced vibration of the Canton Tower[J].Smart Structures and Systems,2014,13(2):281-303.
[4]YANG D H, SHIN J H, LEE H W, et al.Active vibration control of structure by active mass damper and multi-modal negative acceleration feedback control algorithm[J].Journal of Sound and Vibration,2017,392:18-30.
[5]YANG J N.Application of optical control theory to civil engineering structures[J].Journal of Engineering Mechanics Division,1975,101:819-838.
[6]CHANG C C,YANG H T Y.Control of buildings using active tuned mass dampers [J].Journal of Engineering Mechanics, 1995,121(3):355-366.
[7]NAGASHIMA I.Optimal displacement feedback control law for active tuned mass damper [J].Earthquake Engineering and Structural Dynamics,2001,30:1221-1242.
[8]付兴建,王一品.高阶柔性直线系统的鲁棒H∞控制[J].控制工程,2018,25(9):1616-1621.
FU Xingjian,WANG Yipin.Robust H∞ control based on high-order flexible plant system[J].Control Engineering of China,2018,25(9):1616-1621.
[9]潘珩.双惯量谐振系统控制算法研究[J].控制工程,2019, 26(10):1857-1862.
PAN Heng.Research on control algorithm of two-inertia resonance system[J].Control Engineering of China,2019,26(10):1857-1862.
[10]祁皑,李惠.主动质量控制系统的权矩阵选择及其参数的敏感性分析[J].土木工程学报,2003,36(11):93-98.
QI Ai,LI Hui.Selection of weight matrix and sensitivity analysis of parameters in active mass damper system[J].China Civil Engineering Journal,2003,36(11):93-98.
[11]王磊,谭平,李森萍.基于人工鱼群算法的随机结构AMD控制系统LQR权矩阵优化[J].振动与冲击, 2016, 35(8): 154-158.
WANG Lei,TAN Ping,LI Senping.Optimal analysis of weight matrices of LQR algorithm for stochastic structure-AMD system based on artificial fish algorithm[J].Journal of Vibration and Shock, 2016, 35(8): 154-158.
[12]欧进萍,张春巍.新型电磁驱动AMD控制系统的建模与性能试验[J].高技术通讯,2007,17(4):382-388.
OU Jinping,ZHANG Chunwei.Modeling and dynamical testing of an innovative electro-magnetic active mass driver control system for structural vibration[J].High Technology Letters,2007,17(4):382-388.
[13]ZHANG Y, LI L Y, CHENG B W,et al.An active mass damper using rotating actuator for structure vibration[J].Advances in Mechanical Engineering,2016,8(7):1-9.
[14]LEE C H, CHANG S K.Experimental implementation of nonlinear TORA system and adaptive backstepping controller design[J].Neural Computing and Application,2012,214:785-800.
[15]OLFATI-SABER R.Normal forms for underactuated mechanical systems with symmetry[J].IEEE Transactions on Automatic Control,2002,47(2):305-308.
[16]刘金琨.滑模变结构控制MATLAB仿真:基本理论与设计方法[M].北京:清华大学出版社,2019.
[17]卜国雄.高耸结构基于性能的TMD/AMD设计及其动力可靠度分析[D].哈尔滨:哈尔滨工业大学,2010.
[18]郭一峰,徐赵东,涂青,等.基于遗传算法的LQR算法中权矩阵的优化分析[J].振动与冲击,2010,29(11):217-220.
GOU Yifeng,XU Zhaodong,TU Qing,et al.Optimal analysis for Weight matrices in LQR algorithm based on genetic algorithm[J].Journal of Vibration and Shock,2010,29(11):217-220.
[19]胡寿松.自动控制原理[M].6版.北京:科学出版社,2019.
[20]TSAI H C, LIN G C.Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems[J].Earthquake Engineering and Structural Dynamics,1993,22:957-973.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}