铝蜂窝夹芯结构爆炸罐动力响应研究

王震,顾文彬,原奇,陈姮,郝礼楷

振动与冲击 ›› 2021, Vol. 40 ›› Issue (17) : 222-228.

PDF(3033 KB)
PDF(3033 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (17) : 222-228.
论文

铝蜂窝夹芯结构爆炸罐动力响应研究

  • 王震1,顾文彬1,原奇2,陈姮1,郝礼楷1,3
作者信息 +

Dynamic response of anti-explosion vessel with aluminium honeycomb sandwich structure

  • WANG Zhen1, GU Wenbin1, YUAN Qi2, CHEN Heng1, HAO Likai1,3
Author information +
文章历史 +

摘要

铝蜂窝芯具有良好的变形能力、优异的力学性能和缓冲吸能效果,在爆炸罐大当量化的应用方面展现出巨大的优势。结合单层爆炸罐试验和仿真计算结果,得出单层罐在爆炸荷载作用下的最薄弱位置,验证了数值模型的可靠性;基于此提出了一种内衬可滑动的钢板-铝蜂窝芯-钢板复合多层爆炸罐的结构设计,建立了复合多层罐的细观模型,并对其在承受爆炸荷载作用时的变形破坏过程进行了数值模拟。研究表明,单层爆炸罐的仿真计算结果与试验值基本吻合,端盖由于三波的汇聚使其承受荷载最大;铝蜂窝芯内衬的变形过程与能量的耗散同时进行,是耗能的主要途径;蜂窝芯内衬使爆炸罐获得了更好的抗爆能力,成功使1 000 g的TNT炸药量下复合罐的S1测点的应变值小于150 g的TNT单层罐的S1测点的应变值,该研究可为工程设计提供参考。

Abstract

As the aluminium honeycomb core  has good deformation ability, excellent mechanical properties and cushioning energy-absorbing effect, so it has shown great advantages in application of large-scale explosion vessel.Here, combining test and simulation results of single-layer explosion vessel, the weakest position of single-layer explosion vessel under the action of explosion load was obtained to verify the reliability of the numerical model.Then, a designed of steel plate-aluminium honeycomb core-steel plate composite multi-layer explosion vessel with sliding lining was proposed, and its meso model was established.Numerical simulation and energy analysis were performed for its deformation and failure process under explosion load.The results showed that simulation results of single-layer explosion vessel verify test values, and its end cover bears the maximum load due to three-wave gathering; deformation process of aluminium honeycomb core lining and energy-dissipating proceed simultaneously, it is the main way of energy-dissipating; aluminium honeycomb core lining makes explosion vessel obtain a better anti-explosion ability, and its strain value under 1 000 g explosive charge is less than that of 150 g single-layer vessel; the study results can provide a reference for engineering design.

关键词

铝蜂窝芯 / 爆炸罐 / 吸能机理 / 应变 / 细观模型

Key words

aluminium honeycomb core / explosion vessel / energy-absorbing mechanism / strain / meso model

引用本文

导出引用
王震,顾文彬,原奇,陈姮,郝礼楷. 铝蜂窝夹芯结构爆炸罐动力响应研究[J]. 振动与冲击, 2021, 40(17): 222-228
WANG Zhen, GU Wenbin, YUAN Qi, CHEN Heng, HAO Likai. Dynamic response of anti-explosion vessel with aluminium honeycomb sandwich structure[J]. Journal of Vibration and Shock, 2021, 40(17): 222-228

参考文献

[1]赵士达.爆炸容器[J].爆炸与冲击, 1989, 9(1): 85-96.
ZHAO Shida.Explosive container [J].Explosion and Shock, 1989, 9(1): 85-96.
[2]ZHENG J Y, CHEN Y J, DENG G D, et al.Dynamic elastic response of an infinite discrete multi-layered cylindrical shell subjected to uniformly distributed pressure pulse[J].Int J Impact Eng, 2006,32(11): 1800-1827.
[3]CHENG C,  WIDERA G E O.Dynamic burst pressure simulation of cylindrical shells[J].ASME J Pressure Vessel Technol, 2009,131(6): 061205.
[4]宫婕, 汪泉, 李志敏, 等.柱形爆炸容器内爆炸冲击波的传播规律研究[J].爆破, 2017, 34(4): 17-21.
GONG Jie, WANG Quan, LI Zhimin, et al.Study on the propagation law of explosion shock wave in a cylindrical explosion vessel [J].Blasting, 2017, 34(4): 17-21.
[5]TSYPKIN V I, RUSAK V N, SHITOVA T, et al.Deformation and fracture of cylindrical shells made of glass-epoxide[J].Mechanics of Composite Materials, 1981, 17(2): 169-175.
[6]RYZHANSKII V A, SYRUNIN M A.Explosion resistance of a steel cylindrical shell[J].Combustion, Explosion, and Shock Waves, 2011, 47(1): 115-122.
[7]李鸿宾, 金朋刚, 严家佳, 等.炸药在密闭空间中爆炸准静压的计算方法[J].火工品, 2014(1): 45-48.
LI Hongbin, JIN Penggang, YAN Jiajia, et al.Calculation method of quasi-static pressure of explosive in confined space [J].Initiators Pyrotechnics, 2014(1): 45-48.
[8]SIMOENS B, LEFEBVRE M.H, MINAMI F.Dynamic response of a detonation vessel[J].WIT Transactions on the Built Environment, 2012, 126: 51-61.
[9]金朋刚, 李鸿宾, 贾宪振.炸药在密闭容器中爆炸数值模拟和试验[J].火工品, 2019(2): 31-34.
JIN Penggang, LI Hongbin, JIA Xianzhen.Numerical simulation and test of explosive explosion in closed container [J].Initiators Pyrotechnics, 2019(2): 31-34.
[10]YASUI Y. Dynamic axial crushing of multi-layer honeycomb panels and impact tensile behavior of the component members [J].International Journal of Impact Engineering, 2000, 24:659-671.
[11]QIU X,  DESHPANDE V S, FLECK N A.Dynamic response of a clamped circular sandwich plate subject to shock loading[J].Journal of Applied Mechanics, 2004, 71(5): 637.
[12]HIROAKI N, TADAHARU A, WAKAKO A.In-plane impact behavior of honeycomb structures randomly filled with rigid inclusions [J].International Journal of Impact Engineering, 2009, 36: 73-80.
[13]朱文辉, 韩钧万,薛鸿陆,等.爆炸容器动力学研究进展评述[J].力学进展, 1990, 26(1):68-77.
ZHU Wenhui, HAN Junwan, XUE Honglu, et al.Review on the research progress of explosive vessel dynamics [J].Advances in Mechanics, 1990, 26 (1):68-77.
[14]李兴叶, 李兴珠, 郭子如.爆炸容器吸能减振设计探讨[J].煤矿爆破, 2017(2): 1-3.
LI Xingye, LI Xingzhu, GUO Ziru.Discussion on design of energy absorption and vibration reduction for explosive vessels [J].Coal Mine Blasting, 2017(2): 1-3.
[15]李兴珠, 郭子如, 李中南, 等.复合结构爆炸容器降噪性能研究[J].煤矿爆破, 2016(4): 15-18.
LI Xingzhu, GUO Ziru, LI Zhongnan, et al.Research on noise reduction performance of composite structure explosion vessel [J].Coal Mine Blasting, 2016(4): 15-18.
[16]赵海鸥. LS-DYNA 动力分析指南[M]. 北京: 兵器工业出版社, 2003.
[17]JING L, WANG Z, ZHAO L.Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading—numerical simulations[J].Compos Struct, 2013, 99:213-23.
[18]ZHANG C Y, TANG L Q, YANG B, et al.Meso-mechanical study of collapse and fracture behaviors of closed-cell metallic foams [J].Computational Materials Science, 2013, 79: 45-51.
[19]LIU X R, TIAN X G, LU T J, et al.Sandwich plates with functionally graded metallic foam cores subjected to air blast loading[J].International Journal of Mechanical Sciences, 2014, 84: 61-72.
[20]LIU X R, TIAN X G, LU T J, et al.Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores[J].Composite Structures, 2012, 94(8): 2485-2493.
[21]XIONG J, FEGN L, GHOSH R, et al.Fabrication and mechanical behavior of carbon fiber composite sandwich cylindrical shells with corrugated cores[J].Composite Structures, 2015,156:307-319.
[22]SONG H W, HE Q J, XIE J J, et al.Fracture mechanisms and size effects of brittle metallic foams: in situ compression tests inside SEM [J].Composites Science & Technology, 2008, 68(12): 2441-2450.

PDF(3033 KB)

446

Accesses

0

Citation

Detail

段落导航
相关文章

/